2. 神經系統疾病
▼ 致病機理:神經細胞中由于遺傳缺陷導致的疾病
▼ 代表工作:同時另一項突破性的工作則使用一種SunTag(dCas9-10xGCN4)系統融合多個拷貝的轉錄激活蛋白(p65-HSF1),構建了一種Cre依賴性的SunTag-p65-HSF1(SPH)轉基因小鼠模型。使用AAV8將Cre和sgRNAs遞送到SPH轉基因小鼠中,通過激活內源性神經源性轉錄因子的表達,在小鼠體內成功地實現了星形膠質細胞直接轉化為功能性的神經元[17]。這一研究表明,在不需要使用外源重編程因子或轉錄因子的前提下,通過轉錄調控的CRISPR系統可以實現特定細胞的重編程或不同細胞類型之間的轉分化,為體外細胞基因治療遺傳疾病提供了新的策略。

圖5. Cre誘導的dCas9小鼠[21]
3. 單倍體劑量不足引起的疾病
▼ 致病機理:單倍劑量不足(haploinsufficiency )指一個等位基因突變后,另一個等位基因能正常表達,但這只有正常水平50%的蛋白質不足以維持細胞正常的生理功能。
▼ 代表工作:近日,Science在線發表了一篇使用CRISPRa系統在小鼠中成功修復一種因單倍劑量不足引起的肥胖。研究人員通過AAV在SIM1基因或MC4R基因部分功能喪失的小鼠腦部遞送dCas9-vp64和sgRNA的方式成功激活了SIM1或MC4R蛋白的表達,成功抑制了肥胖的表型[18]。這一策略給罹患單倍體劑量不足引起的疾病患者帶來轉機。

圖6. 通過CRISPRa治療單倍體劑量不足相關疾病[18]
4. 異常甲基化引起的疾病
▼ 致病機理:基因中CpG島中的5' C經常突變引起高甲基化、羥甲基化等修飾,研究表明這些異常修飾會影響基因的表達調控,最終引起疾病[19]。
▼ 代表工作:脆性X綜合征(Fragile X syndrome, FXS)就是一種由FMR1基因5' UTR 區中CGG三核甘酸重復序列擴增突變并高甲基化,使FMR基因沉默而導致的疾病。最近的一項研究通過利用dCas9融合Tet甲基胞嘧啶雙加氧酶1(Tet methylcytosine dioxygenase 1, Tet1)轉染FXS iPSCs 細胞系,成功靶向誘導FMR基因5' UTR CpG島去甲基化,為這些因異常甲基化引起的疾病的治療奠定了基礎[20]。

圖7. 脆性X綜合征相關疾病的表觀遺傳治療[20]
怎么樣,這次的公眾號是不是讓大家大開眼界呢?相信通過這四期的公眾號,大家已經對基因編輯在疾病治療中的研究應用有了較為系統的了解,不過“路漫漫其修遠兮”,從實驗室走到臨床還有較為漫長的距離要走。但是大量的實驗已經給我們看到了未來疾病治療的新曙光,相信終有一天,基因編輯治療的大時代終會到來。
參考文獻:(向下滑動查看)
[1]Feinberg AP. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N Engl J Med. 2018, 378(14): 1323-1334.
[2]Brocken DJW, Tark-Dame M, Dame RT. dCas9: A Versatile Tool for Epigenome Editing. Curr Issues Mol Biol. 2018, 26:15-32.
[3]Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gers-bach CA. Highly specific epigenome editing by CRISPRCas9 repressors for silencing of distal regulatory ele-ments. Nat Methods, 2015, 12: 1143-1149.
[4]Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of tran-scription in eukaryotes. Cell, 2013, 154(2): 442-451.
[5]Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods, 2013, 10(10): 977-979.
[6]Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Oust-erout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9- based transcription factors. Nat Methods, 2013, 10(10): 973-976.
[7]Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM. Highly efficient Cas9-mediated transcriptional programming. Nat Methods, 2015, 12(4): 326-328.
[8]Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li JF. A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants, 2017, 3(12): 930-936.
[9]Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R. Editing DNA methylation in the mammalian genome. Cell, 2016, 167(1): 233-247.
[10]Liu P, Chen M, Liu Y, Qi LS, Ding S. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell, 2018, 22(2): 252-261.
[11]Cano-Rodriguez D, Gjaltema RA, Jilderda LJ, Jellema P, Dokter-Fokkens J, Ruiters MH, Rots MG. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun, 2016, 7: 12284.
[12]Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, Maehr R. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods, 2015, 12(5): 401-403.
[13]Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol, 2015, 33(5): 510-517.
[14]Kwon DY, Zhao YT, Lamonica JM, Zhou Z. Locus specific histone deacetylation using a synthetic CRISPRCas9-based HDAC. Nat Commun, 2017, 8: 15315.
[15]Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol, 2013, 31(12): 1133-1136.
[16]Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, Yamauchi T, Sakurai M, O'Keefe DD, Nú?ez-Delicado E, Guillen P, Campistol JM, Wu CJ, Lu LF, Esteban CR, Izpisua Belmonte JC. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell, 2017, 171(7): 1495-1507.
[17]Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H, Hu X, Li C, Yao X, Shen X, Sun Y, Wei Y, Liu F, Ying W, Zhang J, Tang C, Zhang X, Xu H, Shi L, Cheng L, Huang P, Yang H. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci, 2018, 21(3): 40-446.
[18]Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard A, Hardin A, Eckalbar WL, Vaisse C, Ahituv N. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, 2018.
[19]Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell, 2011, 42(4): 451-464.
[20]Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S. Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Cell, 2018, 172(5): 979-992.e6.
[21]Lau CH, Suh Y. In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Res. 2018, 27(6):489-509.