• <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>
  • 發布時間:2019-04-23 07:18 原文鏈接: AutomatedGenomicDNAExtraction

    實驗概要

    This section  provides a general protocol for automated isolation of genomic DNA from  10-20 μl blood samples in a 96-well format using the ChargeSwitch? 20μl blood kit (CS11010-10). Use this general protocol to develop the script for your liquid handling robot.

    主要試劑

    ChargeSwitch? Lysis Buffer (L12)

    Proteinase K

    ChargeSwitch? Magnetic Beads

    ChargeSwitch? Purification Buffer (N5)

    ChargeSwitch? Wash Buffer (W12)

    ChargeSwitch? Elution Buffer (E5) or TE Buffer (not supplied; 10 mM Tris-HCl, 1 mM EDTA, pH 8.5)

    主要設備

    Liquid handling robot configured to process samples in 96-well plates

    96 x 2 ml deep well plate(s)

    96 x 300 μl U-bottomed microtiter plate

    實驗材料

    10-20 μl blood samples

    實驗步驟

    Before Starting
    Perform the following before beginning:

    • Prepare Lysis Mix: For each sample, mix 0.5 ml of ChargeSwitch?  Lysis Buffer (L12) and 5 μl of Proteinase K to prepare the Lysis Mix.  Scale up the volume of reagents used (based on number of samples) to  prepare a master mix.

    • Prepare Purification Mix: For each sample, mix 50 μl of ChargeSwitch? Purification Buffer (N5) and 20 μl of ChargeSwitch?  Magnetic Beads (make sure that the beads are thoroughly resuspended) to  prepare the Purification Mix. Scale up the volume of reagents used  (based on number of samples) to prepare a master mix.

    Automated Protocol
    Follow the protocol below to isolate genomic DNA from 10-20 μl blood samples. The volumes given are on a per sample basis.

    1. Start with 96 x 10-20 μl blood samples in a 96 x 2 ml deep well plate.

    2. Add  500 μl of Lysis Mix and incubate at room temperature for 10 minutes.  Once during the incubation, pipet up and down gently 15 times to mix.  Set the pipette tip to 350 μl and avoid forming bubbles.

    3. Add 70 μl of Purification Mix (make sure that the beads are thoroughly resuspended)

    4. Shake at medium fast speed (e.g. pulse, 10 seconds) to evenly distribute the magnetic beads within the solution.

    5. Shake samples rapidly for 20 seconds to mix.

    6. Wait for 30 seconds.

    7. Move samples to the 96-Well Magnetic Separator.

    8. Wait for 90 seconds.

    9. Slowly aspirate all of the supernatant and discard, leaving behind the pellet of beads.

    10. Remove samples from the 96-Well Magnetic Separator.

    11. Add 500 μl of ChargeSwitch?  Lysis Buffer (L12; no Proteinase K) and shake samples rapidly for 20  seconds to evenly distribute the magnetic beads within the solution.

    12. Add 50 μl of ChargeSwitch? Purification Buffer (N5) and shake at medium speed for 20 seconds to mix. Samples should appear clear, with no brown flecks.

    13. Wait for 30 seconds.

    14. Move samples to the 96-Well Magnetic Separator.

    15. Wait for 60 seconds.

    16. Slowly aspirate all of the supernatant and discard, leaving behind the pellet of beads.

    17. Remove samples from the 96-Well Magnetic Separator.

    18. Add 500 μl of ChargeSwitch? Wash Buffer (W12).

    19. Shake at medium speed (e.g. pulse, 10 seconds) to evenly distribute the magnetic beads within the solution.

    20. Move samples to the 96-Well Magnetic Separator.

    21. Wait for 60 seconds.

    22. Slowly aspirate all of the supernatant and discard, leaving behind the pellet of beads.

    23. Leave samples on the 96-Well Magnetic Separator for the second wash.

    24. Add 500 μl of ChargeSwitch? Wash Buffer (W12).

    25. Wait for 30-60 seconds.

    26. Slowly aspirate all of the supernatant and discard, leaving behind the pellet of beads.

    27. Move samples to the shaker.

    28. Add 100 μl of Elution Buffer. Pipet up and down gently 50 times to mix (set the pipette tip to 75 μl).

    29. Shake rapidly for 1-2 minutes to completely disperse the beads within the solution.

    30. Move samples to the 96-Well Magnetic Separator.

    31. Wait for 1 minute.

    32. Slowly aspirate supernatant containing the DNA to a 96 x 300 μl U-bottomed microtiter plate.

    Storing DNA
    Store the purified DNA at -20°C or use immediately for downstream analysis. Avoid repeatedly freezing and thawing DNA.
    Quantitating DNA Yield
    To quantitate yield of your DNA, use the Quant-iT? PicoGreen? dsDNA Quantitation Kit (Catalog no. P7589).

    注意事項

    To maximize DNA yield, follow these recommendations when processing your samples:

    • Ensure that the robotic tips enter the wells of the plates without interfering with the pellet of beads.

    • When  removing supernatant, leave samples on the 96-Well Magnetic Separator  and aspirate slowly to ensure that the pellet of beads is not disturbed.

    • When resuspending pelleted ChargeSwitch? Magnetic Beads, make sure that all beads are fully resuspended to maximize DNA recovery.

    • To maximize DNA yield, make sure that all Wash Buffer is removed before elution.

    • To maximize DNA yield, make sure that the beads are fully resuspended during the elution step.


    相關文章

    DNA搜索引擎MetaGraph研發成功

    瑞士蘇黎世聯邦理工學院科學家在最新一期《自然》雜志上發表論文稱,他們開發出一款名為MetaGraph的DNA搜索引擎,能快速、高效地檢索公共生物學數據庫中的海量信息,為研究生命科學提供了強大的專業工具......

    破解人腦獨特性的關鍵DNA片段發現

    究竟是什么讓人腦與眾不同?美國加州大學圣迭戈分校研究團隊發現了一個名為HAR123的小型DNA片段,這將是解開人類大腦獨特性之謎的關鍵。相關研究成果發表于新一期《科學進展》雜志。最新研究表明,HAR1......

    破解人腦獨特性的關鍵DNA片段發現

    究竟是什么讓人腦與眾不同?美國加州大學圣迭戈分校研究團隊發現了一個名為HAR123的小型DNA片段,這將是解開人類大腦獨特性之謎的關鍵。相關研究成果發表于新一期《科學進展》雜志。最新研究表明,HAR1......

    科學家開發出超大片段DNA精準無痕編輯新方法

    基因組編輯技術作為生命科學領域的一項重要突破,為基礎研究和應用開發提供了技術支撐。以CRISPR及其衍生技術為代表的編輯系統通過可編程的向導RNA引導Cas9等核酸酶靶向基因組特定位點,被廣泛應用于特......

    在動物大腦中直接修復DNA——神經科學研究新突破系列之一

    神經元中基因編輯的插圖。圖片來源:杰克遜實驗室哪怕在五年前,人們也會認為在活體大腦中進行DNA修復是科幻小說中才有的情節。但現在,科學家已能進入大腦、修復突變,并讓細胞在整個生命周期中維持住這種修復效......

    古DNA為揭示早期埃及人遺傳多樣性提供新線索

    國際知名學術期刊《自然》北京時間7月2日夜間在線發表一篇基因組學論文稱,研究人員從上埃及Nuwayrat地區一個古王國墓葬中提取到一名古埃及個體的全基因組測序數據,這些數據分析可追溯至古埃及第三至第四......

    古DNA揭示埃及人祖先

    在一項研究中,科學家對埃及一座墓葬中的一名古埃及人進行了全基因組測序。這些數據可追溯至古埃及第三至第四王朝,揭示了其與北非及中東地區,包括美索不達米亞古人群的親緣關系,為早期埃及人的遺傳多樣性研究提供......

    這一分子工具有望成基因調控新“秘鑰”

    近年來,環狀單鏈DNA(CssDNA)因其穩定性高、免疫原性弱、可編程性強,成為基因調控、細胞治療等醫學合成生物學領域很有潛力的分子工具之一。近期,中國科學院杭州醫學研究所研究員宋杰團隊針對此前開發的......

    天大學者提出全新DNA存儲系統

    隨著信息技術的飛速發展,傳統存儲方式已經逐漸無法滿足大數據時代的需求。在此背景下,DNA信息存儲技術應運而生,通過利用DNA分子存儲數據,已經被視為未來大規模數據存儲的潛力介質。每克DNA能夠存儲數百......

    我國研發全新的DNA存儲系統HELIX60MB生物醫學圖像存入DNA!

    近日,我國科研人員在DNA存儲領域取得新突破,研發了一種全新的DNA存儲系統——HELIX,該系統專門用于存儲生物醫學數據,并成功實現了60MB的時空組學圖像的存儲與恢復。這一科研成果由天津大學應用數......

  • <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>
  • 调性视频