分子雜交技術(二)
四、核酸探針的標記和檢測 分子雜交是核酸鏈間堿基配對規則的一種結合方式,是核酸的重要理化特性。利用分子雜交這一特性來對特定核酸序列進行檢測,必須將雜交鏈中的一條用某種可以檢測的分子進行標記,這條鏈就稱為核酸探針。因此,核酸探針的制備是分子雜交技術的關鍵。最早采用的也是目前最常用的核酸探針標記方法是放射性同位素標記。常用的放射性同位素有32P和35S前者能量高,信號強,最常用。放射性同位素標記探針雖然敏感度高,但卻存在輻射危害和半衰期限制(32P半衰期為14.3天,35S半衰期為87.1天,125I的半衰期為60天),3H的半衰期長達12.3年,但它所釋放β放射線能量太低(0.018Mev),只能用于組織原位雜交。由于同位素標記的探針在使用過程中存在著上述缺點,近些年來,人們在尋找非航船性標記物方面取得了很大進展,國際上已有多家公司相繼推出多種非放射性探針標記試劑盒,在國內也已具備生物素類標記物的生產能力,并有相應試劑出售。目前......閱讀全文
概述分子雜交技術的內容
互補的核苷酸序列通過Walson-Crick堿基配對形成穩定的雜合雙鏈分子DNA分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。 雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DNA或總RNA。根據使用
DNA分子雜交技術的簡介
DNA分子雜交的基礎是,具有互補堿基序列的DNA分子,可以通過堿基對之間形成氫鍵等,形成穩定的雙鏈區。在進行DNA分子雜交前,先要將兩種生物的DNA分子從細胞中提取出來,再通過加熱或提高pH的方法,將雙鏈DNA分子分離成為單鏈,這個過程稱為變性。然后,將兩種生物的DNA單鏈放在一起雜交,其中一種
分子雜交技術的相關介紹
互補的核苷酸序列通過Watson-Crick堿基配對形成穩定的雜合雙鏈DNA分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。 雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DNA或總RNA。根據使用的方
分子雜交技術的發展歷程
通過堿基對之間非共價鍵的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。使單鏈聚合雙鏈的過程稱為退火或復性。核酸雜交技術基本上是Hall等1961年的工作開始的,探針與靶序列在溶液中雜交,通過平衡密度梯度離心分離雜交體。該法很慢、費力且不精確,但它開拓了核酸雜交技術的研究。Bolton等1962年設
分子雜交技術的發展歷程
通過堿基對之間非共價鍵的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。使單鏈聚合雙鏈的過程稱為退火或復性。核酸雜交技術基本上是Hall等1961年的工作開始的,探針與靶序列在溶液中雜交,通過平衡密度梯度離心分離雜交體。該法很慢、費力且不精確,但它開拓了核酸雜交技術的研究。Bolton等1962年設
核酸分子雜交技術的基本介紹
由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。 (1)靈敏度高、特異性強; (2)用于 DNADNA和RNARNA的定性、定量檢測。
分子雜交的原理和技術特點
不同的DNA片段之間,DNA片段與RNA片段之間,如果彼此間的核苷酸排列順序互補也可以復性,形成新的雙螺旋結構。這種按照互補堿基配對而使不完全互補的兩條多核苷酸相互結合的過程稱為分子雜交。分子雜交(molecular hybridization)確定單鏈核酸堿基序列的技術。其基本原理是待測單鏈核酸與
分子雜交儀技術參數簡介
? ? ? 恒溫范圍:室溫+5℃-100℃。 溫度顯示精度:0.1℃ 溫度均勻性:±0.03℃ 雜交瓶轉速:0-15轉/分或0-24轉/分可調 搖床擺動次數:5-50次/分可調 雜交箱容量:直徑42mm長150mm(6根)或直徑42mm長200mm(6根)或直徑42mm長250mm或直徑4
分子雜交技術隨機引物合成法
隨機引物合成雙鏈探針是使寡核苷酸引物與DNA模板結合,在Klenow酶的作用下,合成DNA探針。合成產物的大小、產量、比活性依賴于反應中模板、引物、dNTP和酶的量。通常,產物平均長度為400-600個核苷酸。利用隨機引物進行反應的優點是:(1)Klenow片段沒有5'→3'外切
分子雜交
一、雜交通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交可在DNA與DNA、RNA與RNA或RNA與DNA的
分子雜交技術菌落原位雜交的實驗操作步驟
1. 將少數菌落轉移到硝酸纖維素濾膜上: (1) 在含有選擇性抗生素的瓊脂平板上放一張硝酸纖維素濾膜。 (2) 用無菌牙簽將各個菌落先轉移至濾膜上,再轉移至含有選擇性抗生素但未放濾膜的瓊脂主平板上。應按一定的格子進行劃線接種(或打點)。每菌落應分別劃線于兩個平板的相同位置上。最后,在濾膜和主
分子雜交技術菌落原位雜交的實驗相關介紹
對分散在若干個瓊脂平板上的少數菌落(100-200)進行克隆篩選時,可采用本方法。將這些菌落歸并到一個瓊脂主平板以及已置于第二個瓊脂平板表面的一張硝酸纖維素濾膜上。經培養一段時間后,對菌落進行原位裂解。主平板應貯存于4℃直至得到篩選結果。 1、材料:待檢測的細菌平皿,已標記好的探針,硝酸纖維素
分子雜交技術的基本信息介紹
互補的核苷酸序列通過Walson-Crick堿基配對形成穩定的雜合雙鏈分子DNA分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。 雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DNA或總RNA。根據使用
關于核酸分子雜交技術的基本介紹
由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。
分子雜交技術所需雙方的要求
雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DNA或總RNA。根據使用的方法被檢測的核酸可以是提純的,也可以在細胞內雜交, 即細胞原位雜交。探針必須經過標記,以便示蹤和檢測。使用最普遍的探針標記物是同位素, 但由于同位素的安全性,近年來發展了許多非同位素
分子雜交技術RNA探針的相關介紹
許多載體如pBluescript, pGEM等均帶有來自噬菌體SP6或E.coli噬菌體T7或T3的啟動子,它們能特異性地被各自噬菌體編碼的依賴于DNA的RNA聚合酶所識別,合成特異性的RNA。在反應體系中若加入經標記的NTP,則可合成RNA探針。RNA探針一般都是單鏈,它具有單鏈DNA探針的優
分子雜交技術的核酸探針標記法
核酸探針根據核酸的性質,可分為DNA和RNA探針;根據是否使用放射性標記物的與否,可分為放射性標記探針和非放射性標記探針;根據是否存在互補鏈,可分為單鏈和雙鏈探針;根據放射性標記物摻入情況,可分為均勻標記和末端標記探針。下面將介紹各種類型的探針及標記方法。 分子生物研究中,最常用的探針即為雙鏈DNA
關于核酸分子雜交技術的特點和技術介紹
1、特點 (1)靈敏度高、特異性強; (2)用于 DNADNA和RNARNA的定性、定量檢測。 2、用途 (1)檢測特異 DNADNA序列的拷貝數、特定DNADNA區域的限制性內切酶圖譜,判定基因的缺失、插入、重排現象; (2)特異基因克隆的篩選; (3)核酸序列的初略分析; (4
分子雜交儀
分子雜交儀(又名:分子雜交箱、分子雜交爐)廣泛地使用于克隆基因的篩選、酶切圖譜的制作、基因組中特定基因序列的定性、定量檢測和疾病的診斷等方面。因而它不僅在分子生物學領域中具有廣泛地應用,而且在臨床診斷上的應用也日趨增多。
分子雜交儀
分子雜交儀(又名:分子雜交箱、分子雜交爐)廣泛地使用于克隆基因的篩選、酶切圖譜的制作、基因組中特定基因序列的定性、定量檢測和疾病的診斷等方面。因而它不僅在分子生物學領域中具有廣泛地應用,而且在臨床診斷上的應用也日趨增多。
分子雜交技術不同的反應條件對雜交結果的影響
(1) 根據雜交液的體積確定雜交的時間:一般來說使用較小體積的雜交液比較好,因為在小體積溶液中,核酸重新配對的速度快、探針用量少,從而使濾膜上的DNA在反應中起主要作用。但在雜交中必須保證有足夠的雜交溶液覆蓋雜交膜。 (2) 根據所用的雜交溶液確定雜交的溫度:一般來說,雜交相為水溶液時,則在6
DNA分子雜交技術的原理堿基互補配對
怎么看出來是否雜交上,這個是要在探針上做標記(標記可以有很多種,生物的、熒光的、放射性的等等),雜交后是要洗脫的,只有這種特異性的雜交才被保留下來,再通過檢測探針上的標記來看出是否雜交上。比如上面的“鑰匙”,就像你用一串的“鑰匙”去試,但你可以先在要的那個“鑰匙”上做個標記,你不需要認識“鑰匙”
醫用核酸分子雜交儀的技術指標
·采用導流雜交技術,提高雜交效率,簡化操作步驟,縮短雜交時間; ·高速熱循環系統,采用先進熱電制冷技術,快速加熱和冷卻; ·彩色LCD顯示器,可對雜交過程中的溫控變化進行實時監控; ·機械升降臺代替手工密封,實現密封自動化; ·壓力平衡系統,減少雜交過程試劑的損耗。
關于分子雜交技術的基本信息介紹
互補的核苷酸序列通過Walson-Crick堿基配對形成穩定的雜合雙鏈分子DNA分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。 雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DNA或總RNA。根據使用
核酸分子雜交技術的基本原理
由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。 具有一定同源性的兩條核酸單鏈在一定的條件下(適宜的溫室度及離子強度等)可按堿基互補還原成雙鏈。雜交的雙方是待測核酸序列
分子雜交技術隨機引物合成法操作步驟
(1) 200ng雙鏈DNA(1μl)和7.5ng隨機引物(1μl)混合后置于eppendorf管內,水浴煮沸5分鐘后,立即置于冰浴中1分鐘。 (2) 與此同時,盡快在一置于冰浴中的0.5ml eppendorf管內混合下列化合物: 20mmol/L DTT 1μl 未標記的dNTP溶液
分子診斷常用技術(二)
( 五) 生物芯片1991 年Affymetrix 公司的Fordor利用其所研發的光蝕刻技術制備了首個以玻片為載體的微陣列,標志著生物芯片正式成為可實際應用的分子生物學技術。時至今日,芯片技術已經得到了長足的發展,如果按結構對其進行分類,基本可分為基于微陣列( microarray) 的雜交芯片與
CRISPR分子診斷技術(二)
6 ?? Sherlock和Mammoth兩家公司的技術并非橫空出世,而是源于張鋒和Doudna兩家實驗室于2015-2018年期間在知名期刊上發表的一系列科研成果。這場學術上的比拼猶如兩個武林高手過招,精彩紛呈,讓人目不暇接。兩個團隊互相競爭,也互相學習,開拓了CRISPR分子診斷這一全新
分子雜交儀原理
分子雜交儀其基本原理就是應用核酸分子的變性和復性的性質,使來源不同的DNA(或RNA)片段,按堿基互補關系形成雜交雙鏈分子(heteroduplex)。雜交雙鏈可以在DNA與DNA鏈之間,也可在RNA與DNA鏈之間形成。核酸分子雜交是基因診斷的最基本的方法之一。它的基本原理是:互補的DNA單鏈能夠在
概述/分子雜交儀
分子雜交儀又稱“分子雜交爐”或“分子雜交箱”根據不同實驗的需要可以選擇不同的規格型號的雜交儀。是現代實驗室采用雜交技術的理想設備,可替代塑料雜交袋和水浴搖床,并避免雜交袋破損帶來污染危險。雜交爐采用微機控溫精確,爐內空氣循環裝置設計獨特,升溫速度快等特點。??????廣泛地使用于克隆基因的篩選、酶切