激光拉曼光譜儀的簡介和原理
簡介 拉曼光譜法是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。 儀器原理 一定波長的電磁波作用于被研究物質的分子,引起分子相應能級的躍遷,產生分子吸收光譜。引起分子電子能級躍遷的光譜稱電子吸收光譜,其波長位于紫外~可見光區,故稱紫外-可見光譜。電子能級躍遷的同時伴有振動能級和轉動能級的躍遷。引起分子振動能級躍遷的光譜稱振動光譜,振動能級躍遷的同時伴有轉動能級的躍遷。拉曼散射光譜是分子的振動-轉動光譜。用遠紅外光波照射分子時,只會引起分子中轉動能級的躍遷,得到純轉動光譜。......閱讀全文
激光拉曼光譜儀的主要部件
激光拉曼光譜儀的主要部件有:激光光源、樣品池、單色器、光電檢測器、記錄儀和計算機。激光光源:多用連續式氣體激發器,有主要波長為632.8nm的He-Ne激光器和主要波長為514.5nm和488.0nm的Ar離子激光器。樣品池:常用微量毛細管以及常量的液體池、氣體池和壓片樣品架等。單色器:激光拉曼光譜
激光拉曼光譜儀的應用(二)
在生物方面上的應用 拉曼光譜是研究生物大分子的有力手段,由于水的拉曼光譜很弱、譜圖又很簡單,故拉曼光譜可以在接近自然狀態、活性狀態下來研究生物大分子的結構及其變化。拉曼光譜在蛋白質二級結構的研究、DNA和致癌物分子間的作用、視紫紅質在光循環中的結構變化、動脈硬化操作中的鈣化沉積和紅細胞膜的等研
激光拉曼光譜儀對乙酰氨基酚拉曼光譜檢測
目前,藥品的安全性問題已經成為了人們時刻關注的焦點,保證藥品質量對保障廣大人民用藥的安全、有效和維護人民身體健康有著重要的意義。傳統的藥物分析法主要有色譜法、容量分析法、光譜分析法等,這些方法的共同缺點是樣品前處理復雜、耗時耗試劑、有機試劑污染等。因此,研究一種操作簡潔、快速準確且無損傷的鑒別手段已
激光拉曼光譜儀對乙酰氨基酚拉曼光譜檢測
原理對乙酰氨基酚(acetaminophen,藥物名撲熱息痛,簡稱APAP),是一種解熱鎮痛藥物,其解熱作用持久而緩慢,有良好的耐受性。但是,若過量服用則會導致面色蒼白、惡心、嘔吐、厭食[4]和腹痛等癥狀,嚴重者可致肝昏迷及死亡。在美國,羥考酮和對乙酰氨基酚組成固定復方制劑的藥物[1],最常見的固定
典型拉曼光譜儀簡介
拉曼光譜技術所需樣品制備技術簡單,并且能對樣品進行無損分析,廣泛適用于分子結構分析,是傅里葉紅外(FTIR)技術的重要補充手段。目前國內外生產提供拉曼光譜儀的廠商主要包括英國的Renishawplc(雷尼紹)公司,日本的Horiba(堀場)公司,美國的ThermoFisher(賽默飛世爾)公司,德國
拉曼光纖光譜儀簡介
拉曼光纖光譜儀世界領先的光譜儀,它具有很高的精確性,合理的價格,并且易于使用。 該產品為拉曼系列中的首選產品,它使用了TE冷卻和高效的CCD陣列,具有兩種可選型號,對應于532 nm和785 nm激發波長。 多種形式樣品方面具有極高的多功能性。 在有機分子的拉曼指紋圖譜區域提供高精度光譜。 取
拉曼光譜儀工作原理
一、拉曼光譜的產生當激光照射在樣品表面,其散射光的絕大部分是瑞利散射光,同時還有少量的各種波長的斯托克斯散射光和更少量的各種波長的反斯托克斯散射光,后兩者被稱為拉曼散射。這些散射光由反射鏡等樣品外光路系統收集后經人射狹縫照射在光柵上被色散,色散后不同波長的光依次通過出射狹縫進入光電探測器件,經信號放
顯微激光共焦拉曼光譜儀的結構和應用
通常來說顯微激光共焦拉曼光譜儀能夠在紫外到近紅外的光譜范圍內測量物質的拉曼光譜,具有超高的靈敏度,分辨率和重復性,能保證高空間分辨率,是一種非破壞性的微區分析手段,拉曼光譜可以單獨和其他技術結合起來使用,方便地確定離子、分子種類的物質結構。 激光共焦拉曼光譜是用來分析物質組分結構等的一種有效光
顯微共焦激光拉曼光譜儀
顯微共焦激光拉曼光譜儀是一種用于物理學、材料科學領域的分析儀器,于2011年11月1日啟用。 技術指標 光譜范圍:50-4000cm-1;激光波長:532nm;激光功率:50mW;信噪比:單晶硅三階峰信噪比大于10.。 主要功能 能夠提供快速、簡單、方便、可重復、且更重要的是無損傷的定性
拉曼激光器的工作原理
當光線照射一個物體時,它會造成在此物體內部的原子同步震動。碰撞到這個物體的光子中,有部分光子會取得或是喪失能量,造成不同波長的光出現。將這個不同波長的光,導入一個特定裝置,經過反射及碰撞,增強它的能量,就可以產生出一個同步的激光光束,這就是拉曼激光。
激光共焦拉曼光譜的原理
激光共焦拉曼光譜是用來分析物質組分﹑結構等的一種有效光譜分析手段,其原理是入射激光會引起分子(或晶格)產生振動而損失(或獲得)部分能量,致使散射光頻率發生變化對散射光的分析,即拉曼光譜分析,可以探知分子的組分,結構及相對含量等,因此被廣泛成為分子探針技術。該儀器是在1960后產生的,他的光源采用激光
拉曼激光器的工作原理
當光線照射一個物體時,它會造成在此物體內部的原子同步震動。碰撞到這個物體的光子中,有部分光子會取得或是喪失能量,造成不同波長的光出現。將這個不同波長的光,導入一個特定裝置,經過反射及碰撞,增強它的能量,就可以產生出一個同步的激光光束,這就是拉曼激光。
激光共焦拉曼光譜的原理
激光共焦拉曼光譜是用來分析物質組分﹑結構等的一種有效光譜分析手段,其原理是入射激光會引起分子(或晶格)產生振動而損失(或獲得)部分能量,致使散射光頻率發生變化對散射光的分析,即拉曼光譜分析,可以探知分子的組分,結構及相對含量等,因此被廣泛成為分子探針技術。該儀器是在1960后產生的,他的光源采用激光
拉曼光譜儀的工作原理
當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變光的傳播方向,從而發生散射,而穿過分子的透射光的頻率,仍與入射光的頻率相同,這時,稱這種散射稱為瑞利散射;還有一種散射光,它約占總散射光強度的 10^~10^,該散射光不僅傳播方向發生了改變,而且該散射光的頻率也發生了
拉曼光譜儀的工作原理
當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變光的傳播方向,從而發生散射,而穿過分子的透射光的頻率,仍與入射光的頻率相同,這時,稱這種散射稱為瑞利散射;還有一種散射光,它約占總散射光強度的 10^-6~10^-10,該散射光不僅傳播方向發生了改變,而且該散射光
拉曼光譜儀的工作原理
當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變光的傳播方向,從而發生散射,而穿過分子的透射光的頻率,仍與入射光的頻率相同,這時,稱這種散射稱為瑞利散射;還有一種散射光,它約占總散射光強度的 10^-6~10^-10,該散射光不僅傳播方向發生了改變,而且該散射光
拉曼光譜儀的工作原理
當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變光的傳播方向,從而發生散射,而穿過分子的透射光的頻率,仍與入射光的頻率相同,這時,稱這種散射稱為瑞利散射;還有一種散射光,它約占總散射光強度的 10^-6~10^-10,該散射光不僅傳播方向發生了改變,而且該散射光的頻
拉曼光譜儀的工作原理
當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變光的傳播方向,從而發生散射,而穿過分子的透射光的頻率,仍與入射光的頻率相同,這時,稱這種散射稱為瑞利散射;還有一種散射光,它約占總散射光強度的 10^-6~10^-10,該散射光不僅傳播方向發生了改變,而且該散射光
拉曼光譜儀的工作原理
當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變光的傳播方向,從而發生散射,而穿過分子的透射光的頻率,仍與入射光的頻率相同,這時,稱這種散射稱為瑞利散射;還有一種散射光,它約占總散射光強度的 10^~10^,該散射光不僅傳播方向發生了改變,而且該散射光的頻率也發
激光拉曼光譜儀的主要部件結構
激光拉曼光譜儀的主要部件有:激光光源、樣品池、單色器、光電檢測器、記錄儀和計算機。 激光光源:多用連續式氣體激發器,有主要波長為632.8nm的He-Ne激光器和主要波長為514.5nm和488.0nm的Ar離子激光器。 樣品池:常用微量毛細管以及常量的液體池、氣體池和壓片樣品架等。 單色
拉曼光譜儀的激光源是什么
拉曼光譜儀以其結構簡單、操作簡便、測量快速高效準確,以低波數測量能力著稱;采用共焦光路設計以獲得更高分辨率,可對樣品表面進行um級的微區檢測,也可用此進行顯微影像測量。 拉曼光譜儀的光源是DPSS激光器,DPSS是全固態半導體激光器的簡稱。
激光共焦拉曼光譜儀的作用
激光共焦拉曼光譜儀是用來分析物質組分﹑結構等的一種有效光譜分析手段,其原理是入射激光會引起分子(或晶格)產生振動而損失(或獲得)部分能量,致使散射光頻率發生變化對散射光的分析,即拉曼光譜分析,可以探知分子的組分,結構及相對含量等。
拉曼散射光譜儀簡介
拉曼光譜儀對于普通人來說還是挺陌生的,一般在科研院所、高等院校物理和化學實驗室、生物及醫學領域等這類地方比較常見,用于光學方面和研究物質成分的判定與確認;拉曼光譜儀還可以應用于刑偵方面,進行毒品的檢測,還可以應用于珠寶行業,進行寶石的鑒定。 該儀器外形構造比較簡單,設計更加靈活,操作也很簡便,
激光拉曼光譜儀的使用包括調試、操作、維護和存放
激光拉曼光譜儀是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。 與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。 如今越來越多的部門單位通過
激光拉曼光譜儀的使用包括調試、操作、維護和存放
激光拉曼光譜儀的使用包括調試、操作、維護和存放 一、注意做好儀器的測試調試 激光拉曼光譜儀完成交付之后,生產商和研究專家都會提醒要根據不同的研究場合而對激光拉曼光譜儀進行前期的測試和調試,這樣才能讓它以zui合適的狀態來為我們的科研分析服務,而且這對科研分析數據的有效性也是一種保障。 二、注意
激光顯微拉曼光譜儀(RAMAN)的應用范圍和樣品要求
應用范圍 1、物質化學結構分析(無損定性分析) 2、材料聚集態結構、晶型變化及其缺陷分析 3、表面成分分布以及深度成分分布分析 4、 高分子結構變化、相容性、應力松弛及其相互作用研究 送樣要求 1、片狀樣品、塊狀樣品、薄膜樣品、纖維樣品可直接測定,注意固體塊狀樣品高度應1μm。 2
拉曼物理學原理和拉曼貢獻
物理學原理拉曼效應的機制和熒光現象不同,并不吸收激發光,因此不能用實際的上能級來解釋,恩拉曼光譜和黃昆用虛的上能級概念說明拉曼效應。假設散射物分子原來處于電子基態,振動能級如上圖所示。當受到入射光照射時,激發光與此分子的作用引起極化可以看作虛的吸收,表述為電子躍遷到虛態(Virtual state)
關于拉曼光譜儀的光源簡介
它的功能是提供單色性好、功率大并且最好能多波長工作的入射光。目前拉曼光譜實驗的光源己全部用激光器代替歷史上使用的汞燈。對常規的拉曼光譜實驗,常見的氣體激光器基本上可以滿足實驗的需要。在某些拉曼光譜實驗中要求入射光的強度穩定,這就要求激光器的輸出功率穩定。
激光顯微共聚焦拉曼光譜儀概述
激光顯微共聚焦拉曼光譜儀是一種用于化學工程、材料科學、機械工程、生物學領域的分析儀器,于2013年7月12日啟用。 技術指標 測試范圍:100-4000 cm-1 2、激光波長:532nm,633nm 3、光譜分辨率:2cm-1。 主要功能 利用光照射到物質上的拉曼效應,可以得到有關分子
拉曼光譜儀原理及優點
拉曼主要是研究物質成分的判定與確認,還可以應用于刑偵及珠寶行業進行毒品的檢測及寶石的鑒定。該以其結構簡單、操作簡便、測量快速高效準確,以低波數測量能力著稱;采用共焦光路設計以獲得更高分辨率,可對樣品表面進行um級的微區檢測,也可用此進行顯微影像測量。 工作原理: 它的主要原理就是利用