• <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>

  • 人工熱核聚變造出116號元素钅立

    一個由日本理化學研究所、中國科學院蘭州近代物理研究所及德國重離子核科學研究所等組成的國際研究小組,日前利用重離子直線加速器(RILAC),以原子序數20號的鈣(48Ca)射束和96號的鋦(248Cm)標靶進行熱核聚變反應,成功合成了原子序數116號的(钅立)同位素292Lv和293Lv。這一成果為探索原子序數119號之后的新元素邁出了一步。研究成果發表在近期出版的《日本物理學會雜志》上。 原子序數104號之后的元素被稱為超重元素,需經過重離子加速器通過聚變反應來人工合成。至今利用冷聚變反應已合成108號(钅黑)、110號(钅達)、111號(钅侖)、112號(钅哥)、113號(钅爾)等超重元素。為探討119號之后的新元素,俄羅斯和美國的聯合研究小組也在應用熱核聚變反應進行合成試驗。 熱核聚變反應是用較輕的重離子(原子序數10至20)照射錒系元素(原子序數89至103的元素)標靶產生核聚變,是比冷聚變反應激發能量更高的熱狀態......閱讀全文

    人工熱核聚變造出116號元素钅立

      一個由日本理化學研究所、中國科學院蘭州近代物理研究所及德國重離子核科學研究所等組成的國際研究小組,日前利用重離子直線加速器(RILAC),以原子序數20號的鈣(48Ca)射束和96號的鋦(248Cm)標靶進行熱核聚變反應,成功合成了原子序數116號的(钅立)同位素292Lv和293Lv。這一成果

    日本新裝置合成出第112號元素的同位素

      日本理化學研究所仁科加速器研究中心的一個聯合研究小組,近日利用新近開發的超重元素實驗裝置“氣體充填型反跳分離器Ⅱ(GARIS-Ⅱ)”,合成出了第112號元素(钅右加哥)的同位素283Cn,并驗證了其衰變能量及衰變時間。  元素周期表上原子序號104號之后的元素被稱為超重元素,由重離子加速器經過聚

    人工智能倒逼出版界“立規矩”

    原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519243.shtm

    人工智能倒逼出版界“立規矩”

    2022年11月,OpenAI發布生成式人工智能(AI)工具ChatGPT。鑒于生成式AI可快速創建文本、圖像等內容,兩個月后,ChatGPT已作為作者,赫然出現在一些學術論文上。英國紐卡斯爾大學數字創新研究員薩瓦斯·帕帕揚尼斯表示,在學術界這一競爭激烈的領域,任何能增加研究人員學術產出的工具都是“

    什么是核聚變?

    核聚變,即輕原子核(例如氘和氚)結合成較重原子核(例如氦)時放出巨大能量。因為化學是在分子、原子層次上研究物質性質,組成,結構與變化規律的科學,而核聚變是發生在原子核層面上的,所以核聚變不屬于化學變化。

    伊朗開展核聚變研究

      伊朗近日宣布已經開展核聚變研究。該技術可用于氫彈制造,但科學家至今無法控制和利用聚變過程所產生的能量。   伊朗核聚變研究中心主任阿斯格哈?賽迪克扎德(Asghar Sediqzadeh)表示,初期的研究需要兩年,而反應堆需要10年才能完工。   西方國家普遍擔憂伊朗正開發核武器。聯合國曾要

    冷核聚變的概念

    冷核聚變是指:在相對低溫(甚至常溫)下進行的核聚變反應,這種情況是針對自然界已知存在的熱核聚變(恒星內部熱核反應)而提出的一種概念性‘假設’,這種設想將極大的降低反應要求,只要能夠在較低溫度下讓核外電子擺脫原子核的束縛,或者在較高溫度下用高強度、高密度磁場阻擋中子或者讓中子定向輸出,就可以使用更普通

    核聚變的類型介紹

    電解水H2O生成H2,通過核裂變產生的高能輻射蒸汽壓縮氫氣(H2),這時的氫氣成為離子狀態,輻射蒸汽壓縮H,兩個H核核聚變生成一個He核,放出巨大的能量。一般在超高溫和超高壓封閉環境下進行。一個D(氘)和T(氚)發生聚變反應會產生一個中子,并且釋放17.6MeV的能量(兩個D(氘)發生聚變反應大約放

    回頭看|江西立行立改-立改立成

      江西省委書記、省長劉奇日前主持召開第64次省委常委會會議,專題研究中央第四環境保護督察組督察“回頭看”發現的問題和交辦的環境信訪問題邊督邊改工作。  劉奇在會上指出,配合中央環保督察“回頭看”,既是一項重要的生態環境保護任務,更是一項嚴肅的政治任務。各地各部門要進一步認清差距、找準癥結、改進工作

    簡述核聚變的控制方法

      1、太陽——引力約束聚變 地球上的萬物靠著太陽源源不斷的能量維持自身的發展。在太陽的中心,溫度高達1500萬攝氏度,氣壓達到3000多億個大氣壓,在這樣的高溫高壓條件下,氫原子核聚變成氦原子核,并放出大量能量。幾十億年來,太陽猶如一個巨大的核聚變反應裝置,無休止地向外輻射著能量。太陽擁有極大質量

    關于核聚變的方法介紹

      實現核聚變已有不少方法。最早的著名方法是"托卡馬克"型磁場約束法。它是利用通過強大電流所產生的強大磁場,把等離子體約束在很小范圍內以實現上述三個條件。雖然在實驗室條件下已接近于成功,但要達到工業應用還差得遠。要建立托卡馬克型核聚變裝置,需要幾千億美元。  另一種實現核聚變的方法是慣性約束法。慣性

    關于核聚變的優勢介紹

      (1)核聚變釋放的能量比核裂變更大  (2)無高端核廢料,可不對環境構成大的污染  (3)燃料供應充足,地球上重氫有10萬億噸(每1升海水中含30毫克氘,而30毫克氘聚變產生的能量相當于300升汽油)  核聚變能利用的燃料是氘(D)和氚。氘在海水中大量存在。海水中大約每6500個氫原子中就有一個

    伊朗宣布啟動核聚變研究

      據伊朗新聞電視臺7月24日報道,伊朗原子能組織主席薩利希當天在首都德黑蘭宣布啟動伊朗核聚變研究。  報道稱,薩利希是在伊朗原子能組織“國家核聚變項目”的啟動儀式上宣布這一消息的。他說,盡管伊朗核聚變研究的商業化“需要20年到30年時間”,但是伊朗將傾全國之力,加快核聚變的研究進程。  

    核聚變的反應裝置介紹

      可行性較大的可控核聚變反應裝置是托卡馬克裝置。  托卡馬克是一種利用磁約束來實現受控核聚變的環形容器。它的名字Tokamak 來源于環形(toroidal)、真空室(kamera)、磁(magnit)、線圈(kotushka)。最初是由位于蘇聯莫斯科的庫爾恰托夫研究所的阿齊莫維齊等人在20世紀5

    核聚變是終極能源嗎?

    ?? 人類從未停止過對更高效更清潔能源的探索,其中核聚變能被認為是終極選擇之一。為推進可控核聚變研究,各國聯合推動了國際熱核聚變實驗堆(ITER)計劃。  近日在科技部舉辦的中國加入ITER計劃十周年紀念活動上,科學家就“核聚變是能源的美好未來嗎”等話題進行了探討。    僅在海水中就有超過45萬億

    關于核聚變的類型介紹

      電解水H2O生成H2,通過核裂變產生的高能輻射蒸汽壓縮氫氣(H2),這時的氫氣成為離子狀態,輻射蒸汽壓縮H,兩個H核核聚變生成一個He核,放出巨大的能量。一般在超高溫和超高壓封閉環境下進行。  一個D(氘)和T(氚)發生聚變反應會產生一個中子,并且釋放17.6MeV的能量(兩個D(氘)發生聚變反

    簡述核聚變的發生條件

      產生可控核聚變需要的條件非常苛刻。我們的太陽就是靠核聚變反應來給太陽系帶來光和熱,其中心溫度達到1500萬攝氏度,另外還有巨大的壓力能使核聚變正常反應,而地球上沒辦法獲得巨大的壓力,只能通過提高溫度來彌補,不過這樣一來溫度要到上億度才行。核聚變如此高的溫度沒有一種固體物質能夠承受,只能靠強大的磁

    概述核聚變的相關原理

      根據愛因斯坦質能方程E=mc2,原子核發生聚變時,有一部分質量轉化為能量釋放出來。  只要微量的質量就可以轉化成很大的能量。  兩個氫的原子核相碰,可以形成一個原子核并釋放出能量,這就是聚變反應,在這種反應中所釋放的能量稱聚變能。聚變能是核能利用的又一重要途徑。  最重要的聚變反應有:  式中D

    核聚變的反應條件介紹

      核聚變是指由質量小的原子,主要是指氘或氚,在一定條件下(如超高溫和高壓),發生原子核互相聚合作用,生成新的質量更重的原子核,并伴隨著巨大的能量釋放的一種核反應形式。原子核中蘊藏巨大的能量,原子核的變化(從一種原子核變化為另外一種原子核)往往伴隨著能量的釋放。  實現方式通常有三種方式來產生核聚變

    核聚變實驗達到“最佳點”

    核聚變反應已經克服了兩個關鍵障礙——提高等離子體密度和保持稠密等離子體,以達到發電所需的“最佳點”。這是邁向核聚變發電的又一里程碑,盡管實現商用反應堆可能還需要數年時間。相關論文4月24日發表于《自然》。DIII-D托卡馬克反應堆內部。圖片來源:Rswilcox (CC BY-SA 4.0)目前,人

    實現核聚變的方法介紹

    實現核聚變已有不少方法。最早的著名方法是"托卡馬克"型磁場約束法。它是利用通過強大電流所產生的強大磁場,把等離子體約束在很小范圍內以實現上述三個條件。雖然在實驗室條件下已接近于成功,但要達到工業應用還差得遠。要建立托卡馬克型核聚變裝置,需要幾千億美元。另一種實現核聚變的方法是慣性約束法。慣性約束核聚

    歐盟啟動“歐洲核聚變”新項目

      歐盟委員會日前宣布,歐盟成員國以及瑞士的聚變研究實驗室共同啟動一個名為“歐洲核聚變”的新項目,旨在推動聚變能技術研究。  2012年末,上述聚變研究實驗室一致通過了2050年前聚變能發展路線圖。研究人員希望,“歐洲核聚變”項目能解決路線圖初始階段的重要科學和技術挑戰,重點之一就是為正在法國建造的

    關于核聚變的劣勢有哪些?

      反應要求與技術要求極高。  從理論上看,用核聚變提供部分能源,是非常有益的。但人類還沒有辦法,對它們進行較好的利用。  (對于核裂變,由于原料鈾的儲量不多,政治干涉很大,放射性與危險性大,核裂變的優勢無法完全利用。截至2006年,核能(核裂變能)發電占世界總電力約15%。說明了核裂變的應用的規模

    了解核聚變有了新工具

    ????溫稠密物質(warm dense matter)是在宇宙星體、地幔內部、實驗室核聚變內爆過程中廣泛存在的一類物質。因此,在實驗室生成溫稠密物質,研究它們的特性對模擬慣性約束核聚變、超新星爆炸和某些行星內部結構、地幔的物質演化和成礦機理等具有重要指導意義。 ????溫稠密物質范圍很寬,可以定

    幾種主要的可控核聚變方式

    太陽——引力約束聚變?? 地球上的萬物靠著太陽源源不斷的能量維持自身的發展。在太陽的中心,溫度高達1500萬攝氏度,氣壓達到3000多億個大氣壓,在這樣的高溫高壓條件下,氫原子核聚變成氦原子核,并放出大量能量。幾十億年來,太陽猶如一個巨大的核聚變反應裝置,無休止地向外輻射著能量。太陽擁有極大質量,產

    “種太陽”團隊:在中國點亮第一盞“聚變之燈”

    能源短缺,是日益嚴峻的全球性挑戰。能否在地球上造出“人造太陽”,為人類提供清潔、穩定的能源?這一問題,困擾了全世界幾代科學家。 為了實現“人造太陽”這一夢想,一個平均年齡只有33歲的高精尖科研團隊,用青春與智慧書寫了科技報國的新時代篇章,被譽為“種太陽”團隊。 這個團隊,就是榮獲第二十

    日本開始組裝核聚變發電實驗裝置

      日本原子能研究開發機構下屬的那珂核聚變研究所28日宣布,已于當天開始組裝核聚變發電實驗裝置“JT60SA”。該裝置由日本與歐盟合作建設,預計2019年開始運轉。   太陽發光發熱依賴其內部無休止的核聚變反應,比如氫的同位素——氘、氚的原子核在超高溫條件下相互聚合,生成更重的新原子核,同時釋放出

    日開始組裝核聚變發電實驗裝置

       日本原子能研究開發機構下屬的那珂核聚變研究所28日宣布,已于當天開始組裝核聚變發電實驗裝置“JT60SA”。該裝置由日本與歐盟合作建設,預計2019年開始運轉。   太陽發光發熱依賴其內部無休止的核聚變反應,比如氫的同位素――氘、氚的原子核在超高溫條件下相互聚合,生成更重的新原

    日本核聚變研究取得新進展

       日本量子科學技術研究開發機構(QST)近日宣布,在其用于國際熱核聚變實驗堆(ITER)加熱等離子體的100萬伏加速器中產生了能夠持續60秒的強電流密度粒子束。60秒是實驗設備限定的運轉時間,有望進一步實現ITER提出的3600秒的目標。此前的時間僅為0.4秒,這標志著長時間維持核聚變燃燒等離子

    美核聚變實驗室主任辭職

      stewartprager從美國新澤西州普林斯頓等離子體物理實驗室(pppl)辭職,該實驗室9月26日在一份聲明中表示。prager的離職緊隨該實驗室主要設備發生故障之后,它可能在一年內不能使用。故障還可能會給能源部4.38億美元的聚變能科學(fes)計劃帶來麻煩,該計劃負責資助pppl,而且已

  • <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>
  • 调性视频