β轉角的結構特點
β-轉角是一種常見的蛋白質二級結構,它通常出現在球狀蛋白表面,因此含有極性和帶電荷的氨基酸殘基。......閱讀全文
β轉角的結構特點
β-轉角是一種常見的蛋白質二級結構,它通常出現在球狀蛋白表面,因此含有極性和帶電荷的氨基酸殘基。
β轉角的結構特點
β-轉角是一種常見的蛋白質二級結構,它通常出現在球狀蛋白表面,因此含有極性和帶電荷的氨基酸殘基。
β-轉角的特定構象特點
β-轉角的特定構象在一定程度上取決與他的組成氨基酸,某些氨基酸如脯氨酸和甘氨酸經常存在其中,由于甘氨酸缺少側鏈(只有一個H),在β-轉角中能很好的調整其他殘基的空間阻礙,因此是立體化學上最合適的氨基酸;而脯氨酸具有環狀結構和固定的角,因此在一定程度上迫使β-轉角形成,促使多肽自身回折且這些回折有助于
螺旋轉角螺旋結構域的結構功能
中文名稱螺旋-轉角-螺旋結構域英文名稱helix-turnhelix motif定 義由兩個α螺旋間隔以一定角度的轉角構成的結構域。其中一個α螺旋可插入DNA大溝中與專一DNA序列結合。應用學科細胞生物學(一級學科),細胞化學(二級學科)
β轉角的定義
β-轉角是一種常見的蛋白質二級結構,它通常出現在球狀蛋白表面,因此含有極性和帶電荷的氨基酸殘基。已經發現的蛋白質的抗體識別、磷酸化、糖基化和羥基化位點經常出現在轉角和緊靠轉交。在β-轉角中第一個殘基的C=O與第四個殘基的N-H氫鍵鍵合形成一個緊密的環,使β-轉角成為比較穩定的結構,多處在蛋白質分子的
β轉角的定義
β-轉角是一種常見的蛋白質二級結構,它通常出現在球狀蛋白表面,因此含有極性和帶電荷的氨基酸殘基。已經發現的蛋白質的抗體識別、磷酸化、糖基化和羥基化位點經常出現在轉角和緊靠轉交。在β-轉角中第一個殘基的C=O與第四個殘基的N-H氫鍵鍵合形成一個緊密的環,使β-轉角成為比較穩定的結構,多處在蛋白質分子的
螺旋轉角螺旋結構域的基本信息
中文名稱螺旋-轉角-螺旋結構域英文名稱helix-turnhelix motif定 義由兩個α螺旋間隔以一定角度的轉角構成的結構域。其中一個α螺旋可插入DNA大溝中與專一DNA序列結合。應用學科細胞生物學(一級學科),細胞化學(二級學科)
細胞化學基礎螺旋轉角螺旋結構域
中文名稱:螺旋-轉角-螺旋結構域英文名稱:helix-turnhelix motif定 義:由兩個α螺旋間隔以一定角度的轉角構成的結構域。其中一個α螺旋可插入DNA大溝中與專一DNA序列結合。應用學科:細胞生物學(一級學科),細胞化學(二級學科)
關于蛋白質二級結構的β轉角簡介
多肽鏈中出現的180°回折的結構稱為β轉角(β-bend)或β回折(β-turn),即U型轉折結構。它是由四個連續氨基酸殘基構成,第2個氨基酸殘基多為脯氨酸,甘氨酸、天冬氨酸、天冬酰胺也常出現在β轉角結構中,第一個氨基酸殘基的羰基與第四個氨基酸殘基的亞氨基之間形成氫鍵以維持其穩定。 常見的轉角
β轉角的特定構象介紹
β-轉角的特定構象在一定程度上取決與他的組成氨基酸,某些氨基酸如脯氨酸和甘氨酸經常存在其中,由于甘氨酸缺少側鏈(只有一個H),在β-轉角中能很好的調整其他殘基的空間阻礙,因此是立體化學上最合適的氨基酸;而脯氨酸具有環狀結構和固定的角,因此在一定程度上迫使β-轉角形成,促使多肽自身回折且這些回折有助于
細胞化學基礎β轉角
β-轉角是一種常見的蛋白質二級結構,它通常出現在球狀蛋白表面,因此含有極性和帶電荷的氨基酸殘基。
細胞化學基礎β轉角的定義
β-轉角是一種常見的蛋白質二級結構,它通常出現在球狀蛋白表面,因此含有極性和帶電荷的氨基酸殘基。已經發現的蛋白質的抗體識別、磷酸化、糖基化和羥基化位點經常出現在轉角和緊靠轉交。在β-轉角中第一個殘基的C=O與第四個殘基的N-H氫鍵鍵合形成一個緊密的環,使β-轉角成為比較穩定的結構,多處在蛋白質分子的
細胞化學基礎β轉角特定構象
β-轉角的特定構象在一定程度上取決與他的組成氨基酸,某些氨基酸如脯氨酸和甘氨酸經常存在其中,由于甘氨酸缺少側鏈(只有一個H),在β-轉角中能很好的調整其他殘基的空間阻礙,因此使立體化學上最合適的氨基酸;而脯氨酸具有環狀結構和固定的角,因此在一定程度上迫使β-轉角形成,促使多臺自身回折且這些回折有助于
結構域的結構特點
結構域(domain)是位于超二級結構和三級結構間的一個層次。結構域是在蛋白質的三級結構內的獨立折疊單元,通常都是幾個超二級結構單元的組合。在較大的蛋白質分子中,由于多肽鏈上相鄰的超二級結構緊密聯系,進一步折疊形成一個或多個相對獨立的致密三維實體,即結構域。結構域與分子整體以共價鍵相連,一般難以分離
結構域的結構特點
結構域(domain)是位于超二級結構和三級結構間的一個層次。結構域是在蛋白質的三級結構內的獨立折疊單元,通常都是幾個超二級結構單元的組合。在較大的蛋白質分子中,由于多肽鏈上相鄰的超二級結構緊密聯系,進一步折疊形成一個或多個相對獨立的致密三維實體,即結構域。結構域與分子整體以共價鍵相連,一般難以分離
莖環結構的結構特點
中文名稱莖-環結構英文名稱stem-loop structure定 義單鏈RNA分子中存在的反向重復序列,由于互補堿基間的氫鍵配對,長鏈區段可以回折形成的一種二級結構。配對堿基間的雙鏈區形成“莖”,而不能配對的單鏈區部分則突出形成“環”。應用學科生物化學與分子生物學(一級學科),核酸與基因(二級學
簡析扭轉彈簧扭轉角度的計算
扭轉彈簧也叫扭簧,為所有彈簧類別中設計原理較為復雜的一種,型式的變化亦相當活潑,故設計時所涉及的理論也較為繁瑣。永創為大家簡單介紹一下扭轉彈簧扭轉角度的計算:扭簧各圈或是緊密圍繞或是分開圍繞,能適任扭轉負荷(與彈簧軸線成直角)。彈簧之末端可繞成鉤狀或直扭轉臂。扭簧的扭轉度,扭簧扭轉的時候材料是拉伸或
解聚的結構特點
指若干或很多分子通過非共價鍵連接而成球狀或線狀分子的聚集體,通過一定的物理或化學方法使之分離的過程。
催乳素的結構特點
催乳素(prolactin,PRL)是含199個氨基酸并有三個二硫鍵的多肽,分子量為22000。在血中還存在著較大分子的PRL,可能是PRL的前體或幾個PRLA分子的聚合體,成人血漿中的PRL濃度
核配的結構特點
核配是(取代環戊二烯基)稀土雙烷基配合物與PhSiH3的氫解反應生成單茂基稀土氫/烷基配合物。2a–c都屬C2對稱結構,分子中心含有平面形的Ln2H2核。
晶體的結構特點
晶體(crystal)是由大量微觀物質單位(原子、離子、分子等)按一定規則有序排列的結構,因此可以從結構單位的大小來研究判斷排列規則和晶體形態 。
烘箱的結構特點
概述烘箱,采用國家重點推廣的節能環保加熱新技術,通過電源使電熱管加熱,產生熱源,當它被加熱物體吸收時可直接轉變為熱能,從而獲得快速干燥效果,達到縮短生產周期,節約能源,提高產品質量等目的。結構烘箱箱體由角鋼、薄鋼板制成。外殼與工作室間填充玻璃纖維保溫與隔熱。加熱系統裝置在工作室的頂部。水平式循環通風
球磨機的-結構特點
(1)主軸承采用了大直徑雙列調心滾子軸承,代替原來的滑動軸承,減少了摩擦,降低耗能,磨機容易啟動。(2)保留了普通磨機的端蓋結構形式,大口徑進出料口,處理量大。(3)給料器分為聯合給料器和鼓形給料器兩種,結構簡單,分體安裝。(4)沒有慣性沖擊,設備運行平穩,并減少了磨機停機停車維修時間,提高了效率。
球磨機的結構特點
(1)主軸承采用了大直徑雙列調心棍子軸承,代替原來的滑動軸承,減少了摩擦,降低耗能,磨機容易啟動。 (2)保留了普通磨機的端蓋結構形式,大口徑進出料口,處理量大。 (3)給料器分為聯合給料器和鼓形給料器兩種,結構簡單,分體安裝。 (4)沒有慣性沖擊,設備運行平穩,并減少了磨機停機停車維修時
溶酶體的結構特點
溶酶體呈圓形或卵圓形,大小不一,直徑多數為0.2~0.8μm,小的只有0.05μm,大的可達數微米。它由厚7~10nm的單位膜包圍,內含60余種酸性水解酶,包括蛋白酶、核酸酶、糖苷酶、脂酶、磷酸酶和硫酸酯酶等,但是通常不能在同一溶酶體內找到所有的酶不同類型細胞溶酶體所含酶的種類和數量也不同。溶酶體水
胚層的結構特點
胚層亦稱為生殖上皮,但較少使用,是動物胚胎形成時的一群細胞。所有動物都具有胚層,其中脊椎動物的胚層構造特別顯著,而海綿動物的胚層最為簡單,通常會產生兩到三層主要組織層(有時候稱為初級胚層)。輻射對稱的動物(如:腔腸動物)具兩個胚層的構造,包含內胚層、外胚層;兩側對稱的動物則具有三個胚層的構造,較輻射
胞苷酸的結構特點
中文名稱胞苷酸英文名稱cytidylic acid定 義胞苷的磷酸酯。視磷酸連接部位不同,有胞苷2′-磷酸(2′-胞苷酸)、胞苷3′-磷酸(3′-胞苷酸)和胞苷5′-磷酸(5′-胞苷酸)三種。體內的胞苷酸通常為5′-磷酸酯。應用學科生物化學與分子生物學(一級學科),核酸與基因(二級學科)
螺旋結構的特點
在很多種聚合物的晶區中,由于相鄰分子鏈的側基之間的相互作用和最緊密的堆砌要求,其分子鏈采取反式和左右式不同交替方式的構象排列,形成螺旋結構。
?酸酐的結構特點
酸酐:兩個分子的一元羧酸分子間失水或者二元羧酸分子內失水而形成的化合物,稱作酸酐。如兩個乙酸分子失去一個水分子形成乙酸酐(CH3COOOCCH3)
hnRNA的結構特點
hnRNA的結構有以下特點:(1) 5′端有帽結構;(2) 3′端有poly(A)尾巴;(3) 帽結構后有3個寡聚U區,每個長約30nt;(4) 有重復序列,位于寡聚U區后面;(5) 有莖環結構,可能分布于編碼區(非重復序列)的兩側;(6) 非重復序列中有內含子區。