X射線熒光(XRF):理解特征X射線
什么是XRF? X射線熒光定義:由高能X射線或伽馬射線轟擊激發材料所發出次級(或熒光)X射線。這種現象廣泛應用于元素分析。 XRF如何工作? 當高能光子(X射線或伽馬射線)被原子吸收,內層電子被激發出來,變成“光電子”,形成空穴,原子處于激發態。外層電子向內層躍遷,發射出能量等于兩級能量差的光子。由于每個元素都有一組獨特的能級,所以每個元素都會發出一組元素特有的X射線,稱為“特征X射線”。X射線強度隨相應元素的濃度增加而增加。 理解特征X射線 當元素的電子在原子能級之間發生躍遷時,就會發出特征X射線。如果一個電子從能量Ei能級躍遷到Ej能級,發出的X射線能量Ex=Ei-Ej。因為每個元素都有一組獨特的原子能級,所以發射出的X射線就是這個元素的特征X射線。 上圖是一個原子的草圖,顯示了不同的原子層級,分別是K,L,M,N……這些特征X射線就是在層級之間躍遷產生的。圖中顯示這些線的命名方式:當從外層躍遷到K層,......閱讀全文
X射線熒光(XRF):理解特征X射線
什么是XRF? X射線熒光定義:由高能X射線或伽馬射線轟擊激發材料所發出次級(或熒光)X射線。這種現象廣泛應用于元素分析。 XRF如何工作? 當高能光子(X射線或伽馬射線)被原子吸收,內層電子被激發出來,變成“光電子”,形成空穴,原子處于激發態。外層電子向內層躍遷,發射出能量等于兩級能
X射線光譜技術(XRF)
X射線光譜技術因其是一種環保型、非破壞性、分析精度高的分析技術[33], 特別是在貴金屬產品、飾品無損檢測方面有其獨特的優勢。用XRFA互標法無損檢測黃金飾品,對金飾品[w(Au)>96%]的測定絕對誤差
微-X-射線熒光-(μXRF)技術詳解
微 X 射線熒光 (μXRF) 是一種元素分析技術,它允許檢測非常小的樣品區域。與傳統的 XRF 儀器一樣,微 X 射線熒光通過使用直接 X 射線激發來誘導來自樣品的特性 X 射線熒光發射,以用于元素分析。與傳統 XRF 不同(其典型空間分辨率的直徑范圍從幾百微米到幾毫米),μXRF 使用 X 射線
X射線熒光光譜儀(XRF)
原理:用一束X射線或低能光線照射樣品材料,致使樣品發射二次特征X射線,也叫X射線熒光。這些X射線熒光的能量或波長是特征的,樣品中元素的濃度直接決定射線的強度。從而根據特征能量線鑒別元素的種類,根據譜線強度來進行定量分析。XRF有波長散射型(WDXRF)和能量散射型(EDXRF)兩種,前者測量精密度好
X射線熒光光譜儀(XRF)
自1895年倫琴發現X射線以來,X射線及相關技術的研究和應用取得了豐碩成果。其中,1910年特征X射線光譜的發現,為X射線光譜學的建立奠定了基礎;20世紀50年代商用X射線發射與熒光光譜儀的問世,使得X射線光譜學技術進入了實用階段;60年代能量色散型X射線光譜儀的出現,促進了X射線光譜學儀器的迅
X射線熒光(XRF)儀的結構組成介紹
一臺典型的X射線熒光(XRF)儀器由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激發被測樣品。受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量。 然后,儀器
X射線熒光光譜分析(-XRF)
XRF:X射線熒光光譜分析(X Ray Fluorescence) 的X射線是電磁波譜中的某特定波長范圍內的電磁波,其特性通常用能量(單位:千電子伏特,keV)和波長(單位:nm)描述。X射線熒光是原子內產生變化所致的現象。一個穩定的原子結構由原子核及核外電子組成。其核外電子都以各自特有的能量在各自
由摩擦效應產生X射線的新型XRF技術
摩擦發光是一種通過機械作用(如拉動、撕裂、刮擦、壓碎或者不同材料間的摩擦等)而產生光的現象。例如,當敲碎蔗糖晶體時或者剝離膠帶時就能觀察到這種現象;這種現象從很久之前的古文明時期就被人們所發現。20世紀80年代,人們發現在X射線能量范圍內,真空管內的機械作用能夠產生光;2008年,一批來自美國加
X射線熒光光譜儀(XRF)基本結構
現代X射線熒光光譜分析儀由以下幾部分組成;X射線發生器(X射線管、高壓電源及穩定穩流裝置)、分光檢測系統(分析晶體、準直器與檢測器)、記數記錄系統(脈沖輻射分析器、定標計、計時器、積分器、記錄器)。
X射線熒光光譜儀(XRF)基本結構
現代X射線熒光光譜分析儀由以下幾部分組成;X射線發生器(X射線管、高壓電源及穩定穩流裝置)、分光檢測系統(分析晶體、準直器與檢測器)、記數記錄系統(脈沖輻射分析器、定標計、計時器、積分器、記錄器)。
X射線熒光光譜儀(XRF)的應用
可以進行固體、粉末、薄膜、液體樣品及不規則樣品的無標樣元素的定性定量分析。主要用于金屬、無機非金屬等材料中化學元素的成分分析,X射線熒光光譜法XRF測試的元素范圍包含有效的元素測量范圍為1號元素 (Na)到92號元素(U)
XRF收購Coltide的X射線熒光漂移監測業務
總部位于墨爾本的XRF公司將收購Coltide 的x射線熒光漂移監測業務。 Coltide是阿德萊德的一家X射線熒光漂移監測儀器制造商和供應商,X射線熒光漂移監測儀器由礦業公司和研究機構進行元素精確校準。Coltide由Keith Norrish博士創立,他是將波長色散X射線熒光光譜法用于礦物
X射線熒光光譜儀(XRF)-簡介
X-射線熒光光譜儀(XRF)是一種較新型可以對多元素進行快速同時測定的儀器。在X射線激發下,被測元素原子的內層電子發生能級躍遷而發出次級X射線(即X-熒光)。波長和能量是從不同的角度來觀察描述X射線所采用的兩個物理量。波長色散型X射線熒光光譜儀(WD-XRF),是用晶體分光而后由探測器接收經過衍射的
XRF(X射線熒光光譜儀)選擇寶典
能測RoHS指令的儀器很多,而且這些儀器無論是國產的還是進口的,都是屬貴重儀器。如何選擇不光是費用問題,更主要的使用問題。 ?????對六種有害物質總量的定量檢測: 一、?按日本商會歐盟分部的“依照RoHS指令的檢測方法”。 ???該方法建議對來料先便攜式(手持式)ROHS檢測儀檢測,能通過的就算合
微-X-射線熒光-(μXRF)的基本信息介紹
微 X 射線熒光 (μXRF) 是一種元素分析技術,它允許檢測非常小的樣品區域。與傳統的 XRF 儀器一樣,微 X 射線熒光通過使用直接 X 射線激發來誘導來自樣品的特性 X 射線熒光發射,以用于元素分析。與傳統 XRF 不同(其典型空間分辨率的直徑范圍從幾百微米到幾毫米),μXRF 使用 X
XRF之X射線金屬成分無損快速分析儀
自然界中大約有70多種金屬,其中常見的有鐵、銅、鋁、錫、鎳、金、銀、鉛、鋅等。而合金是指兩種或兩種以上的金屬或金屬與非金屬結合而成,具有金屬特性的材料。 常見的合金如鐵和碳所組成的鋼合金;鐵、鉻、鎳組成的不銹鋼;銅和鋅所形成的黃銅等。 金屬材料通常分為黑色金屬、有色金屬和特種金屬
由摩擦效應產生X射線的新型XRF技術介紹
摩擦發光是一種通過機械作用(如拉動、撕裂、刮擦、壓碎或者不同材料間的摩擦等)而產生光的現象。例如,當敲碎蔗糖晶體時或者剝離膠帶時就能觀察到這種現象;這種現象從很久之前的古文明時期就被人們所發現。20世紀80年代,人們發現在X射線能量范圍內,真空管內的機械作用能夠產生光;2008年,一批來自美國加
能量色散-X-射線熒光-(ED-XRF)的相關介紹
能量色散 X 射線熒光 (EDXRF) 是用于元素分析應用的兩種通用型 X 射線熒光技術之一。在 EDXRF 光譜儀中,樣品中的所有元素都被同時激發,而能量色散檢測儀與多通道分析儀相結合,用于同時收集從樣品發射的熒光輻射,然后區分來自各個樣品元素的特性輻射的不同能量。EDXRF 系統的分辨率取決
XRF之X射線金屬成分無損快速分析儀
自然界中大約有70多種金屬,其中常見的有鐵、銅、鋁、錫、鎳、金、銀、鉛、鋅等。而合金是指兩種或兩種以上的金屬或金屬與非金屬結合而成,具有金屬特性的材料。 常見的合金如鐵和碳所組成的鋼合金;鐵、鉻、鎳組成的不銹鋼;銅和鋅所形成的黃銅等。 金屬材料通常分為黑色金屬、有色金屬和特種金屬
X射線熒光光譜儀(XRF)的樣品要求
1.粉末樣品需提供3-5g,樣品要200目以下,完全烘干; 2.輕合金(鋁鎂合金)厚度不低于5mm,其他合金不小于1mm,其他材料厚度需滿足3-5mm; 3.檢測單元表面盡量平整,且長寬不超過45mm 4.粉末樣品可能會使用硼酸壓片,如有特殊要求,請提前說明
簡述X射線熒光光譜儀(XRF)的應用
可以進行固體、粉末、薄膜、液體樣品及不規則樣品的無標樣元素的定性定量分析。主要用于金屬、無機非金屬等材料中化學元素的成分分析,X射線熒光光譜法XRF測試的元素范圍包含有效的元素測量范圍為1號元素 (Na)到92號元素(U)
XRF之X射線金屬成分無損快速分析儀
自然界中大約有70多種金屬,其中常見的有鐵、銅、鋁、錫、鎳、金、銀、鉛、鋅等。而合金是指兩種或兩種以上的金屬或金屬與非金屬結合而成,具有金屬特性的材料。? ? 常見的合金如鐵和碳所組成的鋼合金;鐵、鉻、鎳組成的不銹鋼;銅和鋅所形成的黃銅等。? ? 金屬材料通常分為黑色金屬、有色金屬和特種金屬材料。?
X射線熒光光譜儀(XRF)的樣品要求
1.粉末樣品需提供3-5g,樣品要200目以下,完全烘干;2.輕合金(鋁鎂合金)厚度不低于5mm,其他合金不小于1mm,其他材料厚度需滿足3-5mm;3.檢測單元表面盡量平整,且長寬不超過45mm4.粉末樣品可能會使用硼酸壓片,如有特殊要求,需提前說明。
X射線熒光光譜法XRF樣品的要求
1.粉末樣品需提供3-5g,樣品要200目以下,完全烘干; 2.輕合金(鋁鎂合金)厚度不低于5mm,其他合金不小于1mm,其他材料厚度需滿足3-5mm; 3.檢測單元表面盡量平整,且尺寸為4-4.5cm。
XRF9能量色散X射線熒光分析儀
產品介紹 X射線熒光(XRF)分析技術是測定由初級X射線激發樣品時所產生的二次特征X射線(X射線熒光),它是一種非破壞性分析方法,可實現固體和液體樣品的多元素快速分析。XRF適合各類固體,液體樣品中主,次多元素同時測定,檢出限在mg/kg 量級范圍內,制樣方法簡單,現已廣泛應用于地質、材料
X射線熒光光譜儀(XRF)的基本分類
作為一種比較分析技術,在一定的條件下,利用初級X射線光子或其他微觀粒子激發待測物質中的原子,使之產生熒光(次級X射線)而進行物質成分分析的儀器。 按激發、色散和探測方法的不同,分為: X射線光譜法(波長色散) X射線能譜法(能量色散)
X射線熒光光譜儀(XRF)基本原理
X射線熒光光譜儀簡稱:XRF,適用于簡單的元素識別和定量以及更加復雜的分析,X射線熒光光譜分析是確定物質中微量元素的種類和含量的一種方法。 熒光,顧名思義就是在光的照射下發出的光,它是利用一定波長的X射線照射材料,元素處于激發狀態,從而激發出光子,形成一種熒光射線,由于不同元素的激發態的能量大
XRFX射線熒光光譜儀的優點介紹
X射線管產生入射X射線(一次X射線),激發被測樣品。 受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。 探測系統測量這些放射出來的二次X射線的能量及數量。 然后,儀器軟件將探測系統所收集到的信息轉換成樣品中各種
X射線熒光光譜儀(XRF)基本原理
X射線熒光光譜儀簡稱:XRF,適用于簡單的元素識別和定量以及更加復雜的分析,X射線熒光光譜分析是確定物質中微量元素的種類和含量的一種方法。熒光,顧名思義就是在光的照射下發出的光,它是利用一定波長的X射線照射材料,元素處于激發狀態,從而激發出光子,形成一種熒光射線,由于不同元素的激發態的能量大小不一樣
XRF9能量色散X射線熒光分析儀
產品介紹 X射線熒光(XRF)分析技術是測定由初級X射線激發樣品時所產生的二次特征X射線(X射線熒光),它是一種非破壞性分析方法,可實現固體和液體樣品的多元素快速分析。XRF適合各類固體,液體樣品中主,次多元素同時測定,檢出限在mg/kg?量級范圍內,制樣方法簡單,現已廣泛應用于地質、材料、環境、冶