人腦“類器官”研究獲得突破
近日,來自哈佛大學、南加州大學及麻省理工學院的科學家們在開發人腦類器官方面取得的重大進展。相關研究成果發表于Nature雜志,論文標題為“Individual brain organoids reproducibly form cell diversity of the human cerebral cortex”。 類器官(Organoids)是一種微型三維組織培養物,可以在體外培養環境下模擬人組織器官的結構和功能。類器官為直接研究人類疾病提供了很大的希望,人腦類器官的開發極大提高了研究人類大腦發育的能力。但人腦是最為復雜的神經器官,雖然當前的人腦類器官能夠在體外部分形成人腦結構,但它們的個體差異性非常大,并不能用來進行對比實驗研究。該文的研究成果解決了這一難題,通過采用特定的干細胞組合,使多個人腦類器官以相同的發育順序及組織結構持續生長。這些培育成的類器官具有相同的細胞構成和基本連接,并且它們在體外培養環境下能夠長時間......閱讀全文
人腦“類器官”研究獲得突破
近日,來自哈佛大學、南加州大學及麻省理工學院的科學家們在開發人腦類器官方面取得的重大進展。相關研究成果發表于Nature雜志,論文標題為“Individual brain organoids reproducibly form cell diversity of the human cerebr
研究創造新型人腦“類器官”
人類神經系統疾病背后的遺傳學是復雜的,大跨度的基因組參與了疾病的發生和發展。研究其他動物的神經疾病給相關發現提供了的機會很有限,因為人類的大腦非常獨特。哈佛大學(Harvard University)和布羅德研究所(Broad Institute)斯坦利精神病學研究中心(Stanley Cent
人腦類器官移植后對視覺刺激產生反應
美國科學家發現,大腦類器官——實驗室培養的神經元團塊,可以與大鼠的腦結合,并對閃光燈等視覺刺激做出反應。相關研究結果2月3日發表在《細胞—干細胞》期刊上。過去幾十年的研究表明,人們可以將單個人類和嚙齒動物神經元移植到嚙齒動物的大腦中。最近,科學家已經證明人類大腦類器官可以與發育中的嚙齒動物大腦結合。
人腦類器官有了“跨物種整合”模型-有助探索未知疾病
英國《自然》發表的一項神經科學研究發現,人類干細胞來源的類腦組織能與新生大鼠的大腦整合,還會影響其行為。研究結果或能提高人們構建人類神經精神疾病實際模型的能力。人類干細胞培養的大腦類器官是一種很有潛力的平臺,可以模擬人類發育和疾病。然而,體外生長的類器官缺少在真實有機體中存在的各種連接,這會限制類器
人腦類器官準確模擬自閉癥,有望治療復雜腦疾病
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508435.shtm憑借類器官和遺傳學的革命性結合系統,科學家現在可在人腦類器官中全面測試多個突變的影響,識別出脆弱的細胞類型和基因調控網絡,而這正是治療自閉癥譜系障礙的基礎。這一成果為了解最復雜的人類大
類器官
以下是一些可能有助于提高類器官的結構和功能完善程度的方法:優化培養條件:包括培養基成分、生長因子的組合和濃度、細胞外基質的選擇和優化等。例如,通過篩選和調整各種細胞因子的比例,更好地模擬體內細胞生長的微環境。引入血管化和神經支配:開發新的技術手段來構建類器官中的血管網絡和神經連接,以增強營養物質供應
類器官(organoids):器官芯片技術培育人胰島類器官
近日,中國科學院大連化學物理研究所研究員秦建華團隊利用器官芯片技術培育人多能干細胞衍生的胰島類器官取得新進展,相關成果發表在器官芯片領域刊物Lab on a chip上,并被選為封面文章。 類器官(organoids)是一種通過干細胞自組織方式形成的多細胞三維復雜結構,它能夠在體外模擬具有來源
人腦類器官準確模擬自閉癥,有望治療最復雜的腦疾病
憑借類器官和遺傳學的革命性結合系統,科學家現在可在人腦類器官中全面測試多個突變的影響,識別出脆弱的細胞類型和基因調控網絡,而這正是治療自閉癥譜系障礙的基礎。這一成果為了解最復雜的人類大腦疾病提供了前所未有的創新途徑,并為臨床研究帶來了希望。相關結果于13日發表在《自然》雜志上。 左半部分:人腦
包含16個人腦類器官,新型體外生物神經元在線平臺發布
公司創始人與電腦上的多電極陣列。圖片來源:FinalSpark公司官網科技日報北京6月2日電?(記者張夢然)據MSN網站31日消息稱,瑞士生物計算初創公司FinalSpark推出一個在線平臺,用戶可遠程訪問16個人腦類器官。該公司官網稱,這一神經元平臺(Neuroplatform)是世界上第一個允許
包含16個人腦類器官,新型體外生物神經元在線平臺發布
公司創始人與電腦上的多電極陣列。圖片來源:FinalSpark公司官網據MSN網站31日消息稱,瑞士生物計算初創公司FinalSpark推出一個在線平臺,用戶可遠程訪問16個人腦類器官。該公司官網稱,這一神經元平臺(Neuroplatform)是世界上第一個允許在線訪問的體外生物神經元平臺。該公司表
類器官技術步驟
類器官技術是一種在體外培養環境中構建具有三維結構和部分功能的微型器官樣組織的方法。它具有以下幾個關鍵步驟:細胞獲取:通常從胚胎干細胞、誘導多能干細胞或成體干細胞中獲取起始細胞。培養體系建立:使用特定的培養基和添加物,為細胞提供適宜的生長環境。誘導分化:通過添加特定的生長因子、化學物質或物理信號,引導
什么是類器官?
類器官屬于三維(3D)細胞培養物,包含其代表器官的一些關鍵特性。此類體外培養系統包括一個自我更新干細胞群,可分化為多個器官器官特異性的細胞類型,與對應的器官擁有類似的空間組織并能夠重現對應器官的部分功能,從而提供一個高度生理相關系統。
類器官的作用
類器官在多個領域發揮著重要作用:醫學研究方面:疾病模型構建:可以模擬各種疾病的發生和發展過程,如腫瘤類器官能用于研究癌癥的發病機制、藥物反應等。例如,肺癌類器官有助于了解肺癌細胞的侵襲和轉移特性。藥物篩選和測試:能夠更準確地預測藥物的療效和毒性,減少動物實驗的需求。像針對神經退行性疾病的藥物,可以先
什么是類器官?
類器官和真正的器官非常相似,從專業角度闡釋,類器官是體外的3維立體微型細胞簇,高度模擬體內相應器官的結構和功能。通俗來講就是類器官是一個體外構成的具有自我更新,自我組織能力的微型器官,與真實的器官具有相似的空間組織并且能夠執行原始器官功能。
類器官當前成就
類器官研究的當前成就已經非常顯著,并且在多個方面推動了生物醫學科學的發展。以下是一些關鍵的成就: 多種類器官的成功構建: 科學家們已經能夠從人類和動物的干細胞和組織源性細胞中構建出多種類型的類器官,包括腸道、胃、肝臟、胰腺、腎臟、心臟和大腦等。 疾病模型的建立: 類器官技術被廣泛應用于模
類器官技術簡介
類器官技術是一種利用細胞培養技術構建人工器官的方法。它通過將不同類型的細胞種植在三維支架上,使其形成類似于真實器官的結構和功能。類器官通常來源于干細胞(多能干細胞、胎兒或成人來源的),也可以由組織衍生細胞培養而成,這些細胞包括正常干細胞/祖細胞、分化細胞和癌細胞等。其組成類器官的細胞可衍生自誘導多能
類器官的特點
三維結構:與傳統的二維細胞培養相比,更接近體內器官的空間結構。部分功能模擬:能夠展現出一定程度上類似于體內器官的生理功能。類器官的構建通常基于干細胞,包括胚胎干細胞、誘導多能干細胞和成體干細胞。例如,利用腸道干細胞可以培養出腸道類器官。
類器官的優勢
類器官的優勢在于:疾病模型構建:可以用于研究各種疾病,特別是癌癥,更好地模擬腫瘤的異質性和微環境。藥物篩選:為藥物研發和測試提供更接近體內真實情況的模型,提高藥物篩選的效率和準確性。發育生物學研究:有助于了解器官的發育機制和細胞命運決定。
類器官的概念
類器官(Organoid)是指在體外培養條件下,由干細胞或祖細胞分化形成的具有三維結構和一定生理功能的類似于器官的細胞集合體。
類器官技術簡介
類器官技術?是一種新興的、具有巨大潛力的生物技術。它是指在體外利用干細胞或特定組織的細胞,通過特定的培養條件和生物材料的支持,誘導其形成具有三維結構和一定功能的類似于體內器官的細胞聚集體。類器官技術的關鍵步驟包括:細胞獲取:通常從胚胎干細胞、誘導多能干細胞或成體組織中的干細胞分離得到起始細胞。培養體
什么是類器官?
類器官(Organoid)是指在體外培養條件下,由干細胞或祖細胞分化形成的具有三維結構和一定生理功能的類似于器官的細胞集合體。
如何培養類器官?
培養類器官通常需要以下步驟:細胞來源選擇可以使用干細胞(如胚胎干細胞、誘導多能干細胞)或成體組織中的祖細胞。這些細胞通常需要經過分離和純化處理。培養基質準備常用的基質包括細胞外基質成分,如基質膠(Matrigel)等。為細胞提供生長和附著的支架。培養基配制根據要培養的類器官類型,添加特定的生長因子、
類器官的來源
類器官的來源主要包括以下幾種:胚胎干細胞(Embryonic Stem Cells,ESCs):來源于早期胚胎的內細胞團,具有全能性,能夠分化為身體的各種細胞類型。誘導多能干細胞(Induced Pluripotent Stem Cells,iPSCs):通過對成體細胞(如皮膚細胞、血細胞)進行重編
AI系統發展出類人腦特征
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512710.shtm
讓“機器腦”類人腦,關鍵何在?
原文地址:http://news.sciencenet.cn/htmlnews/2023/12/514622.shtm
類器官技術的應用
發育生物學研究:幫助了解器官的發育過程和機制。疾病病理學研究:例如腫瘤類器官可以保持起源組織的基因組、轉錄組、形態學和功能特征,有助于研究疾病的發生發展機制。精準醫療:基于患者自身的腫瘤類器官進行藥物反應測試,為個性化治療方案的確定提供依據。藥物篩選和藥效試驗:能更好地了解真實器官對藥物的反應,篩選
類器官有哪些特點?
三維結構:與傳統的二維細胞培養相比,類器官具有更接近體內器官的三維結構,細胞之間的相互作用和空間排列更類似于真實器官。自我組織和分化能力:能夠在一定程度上模擬器官的發育和分化過程。包含多種細胞類型:通常包含器官中主要的細胞類型,并且這些細胞之間存在一定的相互作用。
類器官的發展歷程
1907年,Henry Van 發現物理分離的海綿細胞可以重現聚集,自行組成一個新的功能完善的海綿。在接下來的幾十年里,脊椎動物中也發現了相似的細胞分離再聚合現象,例如1944年Holtfreter的兩棲動物腎組織實驗和1960年Weiss的禽類胚胎實驗。1961年 Piercehe和 Verney
類器官的應用介紹
疾病研究:幫助理解疾病的發生機制,如腫瘤類器官用于研究癌癥的發展和轉移。藥物測試:評估藥物的療效和毒性,為藥物研發提供更可靠的模型。