“納米畫筆”勾勒未來低維半導體器件
如今人們的生活節奏在加快,對電子設備的要求也越來越高。各種新款電子設備都在變著法子表明自己功能更強大、體型更輕薄。然而,電子設備的功能越豐富、性能越強大,意味著這些設備單位體積中容納的電子元件數目越多;體型越小意味著這些電子元件功能單元的體積越來越小。 就像我們每天都使用的手機,它的中央處理器(CPU)中包含了數十億個晶體管單元;手機相機成像芯片可以達到幾千萬甚至上億像素,里面的感光靈敏元達到了上億數目;手機的存儲容量也已達到幾百GB,甚至TB,同樣包含了數億計的存儲功能單元。 可預期的未來,需要在更小的面積集成更多的電子元件。針對這種需求,厚度僅有0.3至幾納米(頭發絲直徑幾萬分之一)的低維材料應運而生。這類材料可以比作超薄的紙張,只是比紙薄很多,可以用于制備納米級別厚度的電子器件。從材料到器件,現有的制備工藝需要經過十分繁瑣復雜的工藝過程,這對快速篩選適合用于制備電子器件的低維材料極為不利。圖1、各類電子和光電子器......閱讀全文
“納米畫筆”勾勒未來低維半導體器件
如今人們的生活節奏在加快,對電子設備的要求也越來越高。各種新款電子設備都在變著法子表明自己功能更強大、體型更輕薄。然而,電子設備的功能越豐富、性能越強大,意味著這些設備單位體積中容納的電子元件數目越多;體型越小意味著這些電子元件功能單元的體積越來越小。 就像我們每天都使用的手機,它的中央處理
能源納米器件的掃描力探針研究綜述
能源納米技術,泛指利用納米材料和納米尺度的特征效應構筑能源納米器件,致力于解決可再生能源轉化和存儲過程中的瓶頸問題,目前已成為一個重要的學科交叉領域。能源納米器件顯著區別于電子器件和光電子器件,其工作機制決定于器件中電子、空穴和離子等載流子的長程傳輸過程,其傳輸過程常與化學轉化相耦合,并且不同于
低維半導體材料的特征
實際上這里說的低維半導體材料就是納米材料,之所以不愿意使用這個詞,發展納米科學技術的重要目的之一,就是人們能在原子、分子或者納米的尺度水平上來控制和制造功能強大、性能優越的納米電子、光電子器件和電路,納米生物傳感器件等,以造福人類。可以預料,納米科學技術的發展和應用不僅將徹底改變人們的生產和生活方式
低維半導體材料的特性
實際上這里說的低維半導體材料就是納米材料,之所以不愿意使用這個詞,發展納米科學技術的重要目的之一,就是人們能在原子、分子或者納米的尺度水平上來控制和制造功能強大、性能優越的納米電子、光電子器件和電路,納米生物傳感器件等,以造福人類。可以預料,納米科學技術的發展和應用不僅將徹底改變人們的生產和生活方式
低維半導體材料的定義
實際上這里說的低維半導體材料就是納米材料,之所以不愿意使用這個詞,主要是不想與現在熱炒的所謂的納米襯衣、納米啤酒瓶、納米洗衣機等混為一談!從本質上看,發展納米科學技術的重要目的之一,就是人們能在原子、分子或者納米的尺度水平上來控制和制造功能強大、性能優越的納米電子、光電子器件和電路,納米生物傳感器件
原子力顯微鏡探針、原子力顯微鏡及探針的制備方法
原子力顯微鏡探針、原子力顯微鏡及探針的制備方法。原子力顯微鏡探針包括探針本體和設置在探針本體的針尖一側的接觸體,接觸體具有連接段和接觸段,接觸段具有接觸端面;接觸段為二維材料,且接觸端面為原子級光滑且平整的單晶界面。本發明ZL技術的原子力顯微鏡探針可精確地檢測受測樣品的各種性質。介紹隨著微米納米科學
“彈出式”三維成型技術-可制備微納米半導體器件
見過一打開便有小房子或城堡立起來的那種立體書吧。受這種兒童玩具書的啟發,中國、美國、韓國研究人員開發出一種特別簡單的“彈出式”三維成型技術,可制備現有3D打印技術無法實現的微納米半導體器件。 這項成果發表在新一期美國《科學》雜志上。研究負責人之一、美國西北大學研究助理教授張一慧對新華社記者說,
原子力顯微鏡探針簡介
原子力顯微鏡(AFM),是一種具有原子分辨率的表面形貌、電磁性能分析的重要儀器。首臺原子力顯微鏡在1985年研發成功,其模式可分為接觸模式和輕敲模式等多種模式。AFM探針由于應用范圍僅限于原子力顯微鏡,屬于高科技儀器的耗材,應用領域不廣,全世界的使用量也不多。主要的生產廠家分布在德國,瑞士,保加
一杯水中的納米世界:低維半導體的綠色合成研究
以石墨烯、MXene、h-BN等為代表的二維納米材料在光電子領域廣為流行,一方面得益于尺度效應賦予它們的獨特性能,另一方面可以歸功于這些層狀結構材料易于合成,甚至可以通過機械剝離的方法快速獲得。在二維材料興起的背后,傳統光電功能材料,如金屬氧化物半導體,本應同享盛譽,但是由于它們通常以三維晶體結
《納米快報》:一維半導體納米結構光子學
在基金委青年基金、納米重點項目和國家納米測試基金及973課題的支持下,湖南大學納米技術研究中心潘安練、鄒炳鎖教授等團隊成員和北京大學、國家納米中心以及德國馬普研究所合作,在一維半導體納米結構光子學的研究上取得了重大突破:首次正式提出了半導體一維納米結構中光子輸運的概念,建立光傳播的理論模型,并在實驗
一種包裹二維材料的原子力顯微鏡探針制備方法
? ? ? 本發明的實施例提供一種包裹二維材料的原子力顯微鏡探針制備方法,涉及原子力顯微鏡探針的修飾與加工技術領域。本發明實施例提供的方法,能夠在空氣或真空中,在500℃的環境中能穩定粘附在針尖上,可以在空氣和真空中應用于原子力顯微鏡實現各種原子力顯微鏡圖像的獲取;可以應用于對二維平面材料的表面性能
原子力顯微鏡的探針的分類
1、非接觸/輕敲模式針尖以及接觸模式探針:最常用的產品,分辨率高,使用壽命一般。使用過程中探針不斷磨損,分辨率很容易下降。主要應用于表面形貌觀察。 2、導電探針:通過對普通探針鍍10-50納米厚的Pt(以及別的提高鍍層結合力的金屬,如Cr,Ti,Pt和Ir等)得到。 導電探針應用于EFM,K
原子力顯微鏡探針的優缺點
AFM探針基本都是由MEMS技術加工 Si 或者 Si3N4來制備。探針針尖半徑一般為10到幾十nm。微懸臂通常由一個一般100~500μm長和大約500nm~5μm厚的硅片或氮化硅片制成。典型的硅微懸臂大約100μm長、10μm寬、數微米厚。 利用探針與樣品之間各種不同的相互作用的力而開發了
過度氧化誘發的非晶合金納米管超彈性研究獲進展
金屬薄膜、納米片、納米線等低維金屬可同時呈現良好的彈性、強度、塑性等機械性能和功能性能(光、熱、磁、電和催化等),是構建微納米器件的重要候選材料。然而,相比于陶瓷、半導體等材料,大部分金屬材料易因氧化而形成氧化膜。由于表面-體積比在微、納米尺度會顯著提高(106-108?倍),金屬微納米器件的氧化問
過度氧化誘發的非晶合金納米管超彈性研究獲進展
金屬薄膜、納米片、納米線等低維金屬可同時呈現良好的彈性、強度、塑性等機械性能和功能性能(光、熱、磁、電和催化等),是構建微納米器件的重要候選材料。然而,相比于陶瓷、半導體等材料,大部分金屬材料易因氧化而形成氧化膜。由于表面-體積比在微、納米尺度會顯著提高(106-108 倍),金屬微納米器件的氧
納米所與索尼聯合研發半導體材料與器件
6月23日下午,中科院蘇州納米技術與納米仿生研究所與索尼公司半導體材料與器件合作項目啟動簽約儀式在蘇州納米所舉行。研究所所長楊輝代表蘇州納米所與索尼公司高級副總裁熊谷簽訂合作協議,同時,索尼公司將向蘇州納米所提供分子束外延(MBE)裝置的免費使用權。中科院副院長施爾畏,蘇州工業園
新型納米力學成像探針實現原子力顯微鏡下DNA的直讀檢...
新型納米力學成像探針實現原子力顯微鏡下DNA的直讀檢測和高分辨成像 近日,中國科學院上海應用物理研究所物理生物學研究室與上海交通大學、南京郵電大學合作,基于DNA納米技術發展了一系列DNA折紙結構并作為納米力學成像探針,實現了原子力顯微鏡下對基因組DNA的直讀檢測和高分辨成像。相關結果發表于《
1mm/s掃描速度!-EMPIR研發出全球最快計量原子力顯微鏡
歐洲計量創新與研究計劃(EMPIR)的項目“制造3D堆疊集成電路的計量”及其后續項目“可溯源的三維納米計量學”研發出了全球最快的計量原子力顯微鏡。 原子力顯微鏡是一種超高分辨率的掃描探針顯微鏡,能夠測定亞納米或微米級別的樣品表面特征。 該項目研發的顯微鏡由一個末端有尖探針的懸臂組成,能夠“感
精準制造:從微納米邁向原子尺度
“空天海地的網絡建設,信息世界感知力、通信力以及智算力的建設,迫切需要高端、新型的硅基芯片。然而‘自上而下’的光刻技術制造方式已經接近物理極限。”在日前舉行的香山科學會議上,中國科學院院士許寧生說,全球精準制造的競爭已從微納米尺度邁向原子尺度,未來硅基芯片的發展水平將取決于大規模原子制造技術水平
雙探針原子力顯微鏡與單探針有什么區別
雙探針原子力顯微鏡與單探針有什么區別原子力顯微鏡:是一種利用原子,分子間的相互作用力來觀察物體表面微觀形貌的新型實驗技術.它有一根納米級的探針,被固定在可靈敏操控的微米級彈性懸臂上.當探針很靠近樣品時,其頂端的原子與樣品表面原子間的作用力會使懸臂彎曲,偏離原來的位置.根據掃描樣品時探針的偏離量或振動
雙探針原子力顯微鏡與單探針有什么區別
雙探針原子力顯微鏡與單探針有什么區別原子力顯微鏡:是一種利用原子,分子間的相互作用力來觀察物體表面微觀形貌的新型實驗技術.它有一根納米級的探針,被固定在可靈敏操控的微米級彈性懸臂上.當探針很靠近樣品時,其頂端的原子與樣品表面原子間的作用力會使懸臂彎曲,偏離原來的位置.根據掃描樣品時探針的偏離量或振動
原子力顯微鏡探針針尖形貌盲重構
隨著微電子學、材料學、精密機械學、生命科學和生物學等的研究深入到原子尺度,納米加工工藝要求逐步提高,納米尺度精密測量和量值傳遞標準需求越來越大。為此,迫切需要具有計量功能的納米、亞納米精度測量系統(包括測量儀器和標定樣品等)。原子力顯微鏡(AFM)是目前最重要、應用最廣泛的納米測量儀器之一,是真正意
原子力顯微鏡探針的分類及應用
? ? ?原子力顯微鏡是一種具有原子分辨率的表面形貌、電磁性能分析的重要儀器。原子力顯微鏡探針由于應用范圍僅限于原子力顯微鏡,屬于高科技儀器的耗材,應用領域不廣,全世界的使用量也不多。原子力顯微鏡探針的分類 原子力顯微鏡探針基本都是由MEMS技術加工Si或者Si3N4來制備。探針針尖半徑一般為10
熱掃描探針光刻技術消除二維半導體材料
?? 二維半導體材料,比如二硫化鉬(MoS2),表現出了諸多新奇的特性,從而使其具有應用于新型電子器件領域的潛力。目前,研究人員常用電子束光刻的方法,在此類僅若干原子層厚的材料表面定域制備圖形化電極,從而研究其電學特性。然而,采用此類方法常遇到的問題之一是二維半導體材料與金屬電極之間為非歐姆接觸,且
原子力顯微鏡(AFM)探針技術簡介和展望
一. ?原子力顯微鏡(AFM)簡介二. ?AFM探針分類三.AFM探針生產、銷售資訊四.展望?一. ?原子力顯微鏡(AFM)簡介????? 原子力顯微鏡(atomic force microscope, AFM)是一種具有原子分辨率的表面形貌、電磁性能分析的重要儀器。1981年,STM(scan
原子力顯微鏡探針的顯微鏡由來
? ? ? ?原子力顯微鏡(atomic force microscope, AFM)是一種具有原子分辨率的表面形貌、電磁性能分析的重要儀器。1981年,STM(scanning tunneling microscopy, 掃描隧道顯微鏡)由IBM-Zurich 的Binnig and Rohrer
原子力顯微鏡(AFM)之納米加工
掃描探針納米加工技術是納米科技的核心技術之一,其基本的原理是利用SPM的探針-樣品納米可控定位和運動及其相互作用對樣品進行納米加工操縱,常用的納米加工技術包括:機械刻蝕、電致/場致刻蝕、浸潤筆等。
我國成功制備零維/二維鈣鈦礦/黑磷低維復合納米材料
近日,中國科學院深圳先進技術研究院喻學鋒研究員與李佳副研究員合作在鈣鈦礦/黑磷復合納米材料的研究領域取得新進展,通過簡單的液相制備工藝成功在黑磷納米片上原位生長全無機鈣鈦礦納米晶顆粒,制備出了零維鈣鈦礦/二維黑磷的低維異質結結構,展現出優良的光電應用潛力。相關成果“In situ growth
AFM磁學測量
磁學測量磁性納米結構和材料在高密度磁存儲、自旋電子學等領域有著廣泛的應用前景,高空間分辨的磁成像和磁測量技術將有利于推動磁性納米結構和材料的研究。基于掃描探針及其相關技術,發展出一系列納米磁性成像與測量的技術和方法,包括磁力顯微術、磁交換力顯微術、掃描霍爾顯微術、掃描超導量子干涉器件顯微術、掃描磁共
AFM在物理學中的應用
物理學中,AFM可以用于研究金屬和半導體的表面形貌、表面重構、表面電子態及動態過程,超導體表面結構和電子態層狀材料中的電荷密度等。從理論上講,金屬的表面結構可由晶體結構推斷出來,但實際上金屬表面很復雜。衍射分析方法已經表明,在許多情況下,表面形成超晶體結構(稱為表面重構),可使表面自由能達到最小