5G毫米波無線電射頻技術演進(二)
近期最實用、最有效的波束合成方法是混合數模波束成型,它實質上是將數字預編碼和模擬波束合成結合起來,在一個空間(空間復用)中同時產生多個波束。通過將功率引導至具有窄波束的目標用戶,基站可以重用相同的頻譜,同時在給定的時隙中為多個用戶服務。雖然文獻中報道的混合波束成型有幾種 不同的方法,但這里顯示的子陣方法是最實際的實現方法,本質上是模擬波束成型的步驟和重復。目前,報告的系統實際上支持 2 到 8 個數字流,可以用于同時支持單個用戶,或者向較少數量的用戶提供 2 層或更多層的 MIMO。 讓我們更深入地探討模擬波束成型的技術選擇,即構建混合波束成型的構建模塊,如圖 3 所示。在這里,我們將模擬波束合成系統分為三個模塊進行處理:數字、位到毫米波和波束成型。這并非實際系統的劃分方式,因為人們會把所有毫米波組件放在鄰近位置以減少損耗,但是這種劃分的原因很快就會變得很......閱讀全文
5G毫米波無線電射頻技術演進-(二)
? 近期最實用、最有效的波束合成方法是混合數模波束成型,它實質上是將數字預編碼和模擬波束合成結合起來,在一個空間(空間復用)中同時產生多個波束。通過將功率引導至具有窄波束的目標用戶,基站可以重用相同的頻譜,同時在給定的時隙中為多個用戶服務。雖然文獻中報道的混合波束成型有幾種 不同的方法
5G毫米波無線電射頻技術演進-(一)
當無線產業開始創建 5G 時,2020 年顯得那么遙遠。而現在就快到 2020 年,這無疑將是屬于 5G 的十年。新聞每天都會報道新的現場試驗和即將進行的商業 5G 部署。對于無線產業來說,這是一個非常令人興奮的時刻。目前,行業 5G 焦點主要在增強移動寬帶方面,利用中頻和高頻頻譜
5G毫米波無線電射頻技術概述
業界普遍認為,混合波束賦形(例如圖 1 所示)將是工作在微波和毫米波頻率的 5G 系統的首選架構。這種架構綜合運用數字(MIMO) 和模擬波束賦形來克服高路徑損耗并提高頻譜效率。如圖 1 所示,m 個數據流的組合分割到 n 條 RF 路徑上以形成自由空間中的波束,故天線元件總數為乘
5G通訊關鍵之“毫米波技術解析”(二)
相比而言,4G-LTE頻段最高頻率的載波在2GHz上下,而可用頻譜帶寬只有100MHz。因此,如果使用毫米波頻段,頻譜帶寬輕輕松松就翻了10倍,傳輸速率也可得到巨大提升。5G時代,我們可以使用毫米波頻段輕輕松松用手機5G在線看藍光品質的電影,只要你不怕流量用完!各個頻段可用頻譜帶寬比較
發展5G網絡的關鍵技術:毫米波(二)
毫米波的特性 說了這么多,毫米波又具備哪些特性呢?從理論上講,毫米波是光波向低頻的發展與微波向高頻的延伸。由于毫米波的獨有特性,使其在傳播時不易受到自然光和熱輻射源的影響,不光是通信,其還可應用于雷達、制導等諸多領域。 說了這么多,毫米波又具備哪些特性呢?從理論上講,毫米波是光波
后FinFET時代的技術演進(二)
需要微縮助推器在6T和5T的低單元高度下,向Nanosheet器件的遷移變得最佳,因為在這種情況下,fin的減少會降低傳統基于FinFET的單元中的驅動電流。但是,如果不引入結構化微縮助推器(如埋入式電源軌和環繞式接觸),就無法將單元高度從6T減小到5T。電源軌為芯片的不同組件提供電源,并且一般由B
5G網絡實現的核心技術:毫米波
如今,很多人都在說5G技術的前景,5G技術將是一個革命性的技術,對很多產業將產生變革。可是,對于很多小白而言,5G和4G技術的一個關鍵區別就是毫米波技術,這個可能是5G網絡實現的核心技術。什么是毫米波?有啥用?毫米波是指波長在毫米數量級的電磁波,其頻率大約在30GHz~300GHz之間。根據通信原理
5G通訊關鍵之“毫米波技術解析”(一)
第五代移動通信系統 (5th generation mobile networks,簡稱5G)離正式商用(2020年)越來越接近,這些日子華為、三星等各大廠商也紛紛發布了自己的解決方案,可謂“八仙過海,各顯神通”。 5G的一個關鍵指標是傳輸速率:按照通信行業的預期,5G應當實現比4G快
基于毫米波微帶天線設計的射頻電路實驗-(二)
2. 3 天線陣列設計 1) 天線形式確定 ? 上式中,λ 0 為中心頻率處的真空波長; f x 和 σ x為波束展寬因子; d 為輻射單元間距; N 為輻射單元數,α m 為最大輻射方向與平面陣元之間的夾角。為滿足單元副瓣抑制條件,單元間距 d 必須小于波長λ 0
聯合研究在5G毫米波大規模MIMO射頻鏈路壓縮領域取得進展
近日,由中國科學院沈陽自動化研究所團隊與以色列魏茨曼科學院 (Weizmann Institute of Science) 研究團隊,聯合提出了針對多輸入多輸出 (Multiple-Input Multiple-Output, MIMO) 無線通信系統的射頻鏈路壓縮理論與算法,并搭建了相應的硬件
5G-mmWave毫米波頻譜
毫米波依靠超高的 mmWave 頻率的速度和容量為 5G 應用提供超強動力。 ? 毫米波 5G,也被稱為 mmWave——是下一代移動應用基礎。我們將解釋它是什么,以及在需要高容量、低延遲網絡的地區,它將如何影響 5G 網絡。 ? 下一代 5G 網絡不僅將在大范圍內提供無處不在
諾基亞攜DoCoMo開展90GHz毫米波頻段5G測試
據悉,諾基亞和日本電信巨頭NTT?DoCoMo日前正在測試使用極高毫米波(mmWave)頻譜的5G技術,用于提供虛擬現實(VR)和增強現實視頻等高帶寬、低延遲服務。此次測試將使用諾基亞貝爾實驗室部門的相控陣射頻芯片和天線平臺,以支持90 GHz頻段的5G傳輸。該頻段明顯高于當前大多數使用mmWave
淺析毫米波與5G之間有哪些“血肉”聯系(二)
毫米波是今年如火如荼的話題之一,原因在于毫米波使5G技術成為可能。那么,5G網絡是如何借助毫米波發展自身的呢?心懷這個疑問來看看本文吧。在本文中,將通俗易懂地向大家介紹毫米波的基本知識,并闡述毫米波與5G間的“血肉”關聯。毫米波是什么毫米波究竟是個什么東西?其實我們翻翻高中物理課本就能清楚,
發展5G網絡的關鍵技術:毫米波(一)
距離2020年5G正式商用的期限,越來越近。目前,各大廠商都在加快自己在5G技術上的測試工作。記得在上周,華為與沃達豐共同完成了5G毫米波室外現場測試,實現單用戶設備20Git/s的峰值傳輸速度。不過,按照預期,最終5G的傳輸速率將可實現1Gb/s,比4G快十倍以上,要如何實現?
堅持創新引領,持續增強5G演進升級
在國務院新聞辦公室日前舉行的新聞發布會上,工業和信息化部總工程師趙志國介紹,將堅持創新引領,推動5G演進和6G技術研發。持續向增強5G演進升級,支持5G R18基站、5G新型終端等技術產品攻關,不斷支撐5G新特性、新業務。大力推動6G技術研究,開展技術試驗,深化交流合作,加快6G創新發展。 “
5G毫米波接口特性分析的挑戰及考慮因素(二)
重要技術挑戰包括:◇?以大于500MHz帶寬及多通道支持,在毫米波頻率下進行信號產生及分析◇?數據擷取及儲存◇?通道參數估算◇?校驗及同步化接下來討論有助于因應這些挑戰的一些重要考慮。信號產生與分析為了滿足使用者對于5G的高帶寬需求,無線接口標準將涵蓋高達100GHz的毫米波頻率,帶寬為50
Qorvo:5G射頻前端的挑戰
在很多分析師和廠商看來,5G這個高速、低延遲和廣泛覆蓋網絡到來,除了在應用方面帶來了變革的機會,給上游供應商也帶來了不小的挑戰,尤其是射頻前端方面。 本文為大家帶來Qorvo從領先射頻前端解決方案供應商的角度談談5G時代射頻前端的機遇與挑戰。 5G手機的射頻技術主要存在著四大挑戰
一文帶你了解5G毫米波頻譜
毫米波依靠超高的 mmWave 頻率的速度和容量為 5G 應用提供超強動力。 ? 毫米波 5G,也被稱為 mmWave——是下一代移動應用基礎。我們將解釋它是什么,以及在需要高容量、低延遲網絡的地區,它將如何影響 5G 網絡。 ? 下一代 5G 網絡不僅將在大范圍內提供無處不在
毫米波技術應用及其進展(二)
3毫米波技術基礎研究的進展 毫米波技術應用的發展是建立在毫米波元器件發展的基礎上的。應用的需要又反過來推動了元器件的發展。同時材料、工藝和計算機輔助設計的發展也為元器件的發展創造了條件。這里介紹部分元器件的發展情況。 3.1半導體器件 在毫米波系統中應用的半導體器件有混頻器、低噪聲放大器
毫米波與太赫茲技術(二)
1.3 硅基毫米波芯片硅基工藝傳統上以數字電路應用為主。隨著深亞微米和納米工藝的不斷發展,硅基工藝特征尺寸不斷減小,柵長的縮短彌補了電子遷移率的不足,從而使得晶體管的截止頻率和最大振蕩頻率不斷提高,這使得硅工藝在毫米波甚至太赫茲頻段的應用成為可能。國際半導體藍圖協會(International
毫米波通信技術應用介紹(二)
Campus & Enterprise Facility NetworksMillimetre Wave Wireless Networks are very suited to both long term and short term solutions where organisati
氮化鎵是實現-5G-的關鍵技術
? 日前,與 SEMICON CHINA 2020 同期的功率及化合物半導體國際論壇 2020 在上海隆重舉行,Qorvo FAE 經理荀穎也在論壇上發表了題為《實現 5G 的關鍵技術—— GaN》的演講。 ?
5G技術關鍵所在:解讀三種頻率毫米波
毫米波:三種頻率的故事為了服務客戶,全球各地的電信業者已在頻譜上投資了數十億美元。設定頻譜拍賣底價更突顯了頻譜這種寶貴資源的市場價值與供不應求的特性。開啟新的頻譜讓電信業者不僅能服務更多使用者,還能提供更高效能的移動寬帶數據傳輸體驗。與6GHz以下的頻譜相比,毫米波的頻譜不僅非常充裕,而且只要稍經授
毫米波,距離我們還有多遠?-(一)
根據預測,到今年年底,國內5G基站的數量將可能達到70萬個。 ? 就在5G建設如火如荼的同時,隨著R16版本的凍結,人們逐漸將關注目光放在5G下一階段關鍵技術上。這其中,就包括號稱5G殺手锏的毫米波技術。 我們知道,3GPP定義的5G無線電頻段范圍有2個,分別為FR1頻段和F
華為5G芯片率先完成SA/NSA全部測試的背后面臨哪些挑戰2
配置寬帶測試臺,以覆蓋廣泛的頻率范圍增強型移動寬帶(eMBB,Enhance Mobile Broadband)是ITU-R確定的5G三大主要應用場景之一。5G增強型移動寬帶:具備更大的吞吐量、低延時以及更一致的體驗。5G增強型移動寬帶主要體現在以下領域:3D超高清視頻遠程呈現、可感知的互聯
5G-時代,射頻前端騰飛在即
在過去幾年中,通信廠商和硬件制造商都在積極布局5G產品,例如針對毫米波、MIMO、載波聚合等一系列軟硬件應用的開發。 ? 當前最新的5G硬件都是在配合相關標準,例如3GPPR16。雖然5G的規范和更新還在進行中,但是可以通過軟件更新的方式來滿足要求。 ? 目前已經推出的5G模組
毫米波收發器系統硬件介紹(一)
概覽無線技術已無所不在。 現在能連接無線的新型無線設備越來越多,其消耗的數據量與日俱增。 無線設備的數量與數據消耗量每年都以指數級增加。 為了滿足此類需求,許多機構都在研究新型無線技術,以完善現有的無線架構。 為了達成這個目標,世界各地的無線標準化組織共同展開了一項艱巨的任務,那就是定義
Pre5G和5G:毫米波頻段能如愿工作嗎?(二)
高頻率的挑戰從自由空間傳播損耗(FSPL)公式可見,頻率增加路徑損耗隨著增加。波長(λ)和頻率(f)通過光速(c)關聯,即:λf= c,并且隨著頻率的增加,波長會縮短。這產生兩個主要影響。首先,隨著波長的縮短,兩個天線單元之間所需的間隔(通常為λ/2)減小,這使得實際天線陣列具有多重天線單元
東南大學洪偉等:FITEE高通量毫米波無線通信專刊導讀
現代信息社會中,移動通信是實現信息高效流動的基本手段。近期,第五代移動通信系統(5G)已實現大規模商用。當前,5G長期演進和第六代移動通信系統(6G)成為學術界和產業界的研究熱點。實現高通量無線通信的核心資源是頻譜,因此,毫米波(Millimeter-Wave, mmWave)頻段的開發利用
一文讀懂28GHz-5G通信頻段射頻前端模塊-(二)
進一步評估了史密斯圓圖上的其他阻抗點下,功放的 P1dB 和功率回退兩種條件下的性能。圖 2a 中的負載條件明顯具有最好的綜合性能,因此被選定用于輸出級設計。最終選擇了 52mA/mm 的偏置電流,并選擇了 8x50μm 器件作為輸出級的基本單元,以滿足功率指標要求。并根據總的傳輸增益