• <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>

  • 鋰電池非碳負極材料的介紹

    對LixFe2O3、LixWO2、LixMoO2、LixNb2O5等過渡金屬氧化物材料研究工作開展比較早,與LixC6嵌入化合物相比,這些材料的比容量較低,因而基本上未能得到實際應用。錫的氧化物(包括氧化亞錫、氧化錫及其混合物)具有一定的可逆儲鋰能力,儲鋰容量比石墨材料高得多,可達到500 mAh·g-1以上,其中采用低壓氣相沉積法制備的晶型氧化錫(SnO2)的循環性能比較理想,充放電循環100次容量幾乎不衰減,顯示了一定的應用前景。通過向錫的氧化物中摻入B、P、Al及金屬元素的方法,制備出非晶態(無定形)結構的錫基復合氧化物[通式為SnMxOy(x≥1)],其可逆容量達到600mAh·g-1以上,體積比容量大于2200 mAh·cm-3,是目前碳負極材料(500~1200 mAh·cm-3)的2倍以上,循環性能也較好。該材料目前的問題是首次不可逆容量仍較高,充放電循環性能也有待進一步改進提高。 含鋰過渡金屬氮化物是在氮化......閱讀全文

    鋰電池非碳負極材料的介紹

      對LixFe2O3、LixWO2、LixMoO2、LixNb2O5等過渡金屬氧化物材料研究工作開展比較早,與LixC6嵌入化合物相比,這些材料的比容量較低,因而基本上未能得到實際應用。錫的氧化物(包括氧化亞錫、氧化錫及其混合物)具有一定的可逆儲鋰能力,儲鋰容量比石墨材料高得多,可達到500 mA

    非碳鋰電池負極材料的性能介紹

    含鋰過渡金屬氮化物是在氮化鋰Li3N高離子導體材料(電導率為102·cm-1)的研究基礎上發展起來的,可分為反CaF2型和Li3N型兩種,代表性的材料分別為Li3-xCoxN和Li7MnN4。Li3-xCoxN屬于Li3N型結構鋰過渡金屬氮化物(其通式為Li3-xMxN,M為Co、Ni、Cu等),該

    鋰電池碳負極材料介紹

    碳負極材料:鋰電池已經實際用于鋰離子電池的負極材料基本上都是碳素材料,如人工石墨、天然石墨、中間相碳微球、石油焦、碳纖維、熱解樹脂碳等。

    鋰電池碳負極材料的相關介紹

      碳負極鋰離子電池在安全和循環壽命方面顯示出較好的性能,并且碳材料價廉、無毒,目前商品鋰離子電池廣泛采用碳負極材料。近年來隨著對碳材料研究工作的不斷深入,已經發現通過對石墨和各類碳材料進行表面改性和結構調整,或使石墨部分無序化,或在各類碳材料中形成納米級的孔、洞和通道等結構,鋰在其中的嵌入-脫嵌不

    鋰電池的新材料硅碳復合負極材料的介紹

      數碼終端產品的大屏幕化、功能多樣化后,對電池的續航提出了新的要求。當前鋰電材料克容量較低,不能滿足終端對電池日益增長的需求。  硅碳復合材料作為未來負極材料的一種,其理論克容量約為4200mAh/g以上,比石墨類負極的372mAh/g高出了10倍有余,其產業化后,將大大提升電池的容量。現在硅碳復

    鋰電非碳負極材料氮化物的相關介紹

      鋰過渡金屬氮化物具有很好的離子導電性、電子導電性和化學穩定性,用作鋰離子電池負極材料,其放電電壓通常在1.0V以上。電極的放電比容量、循環性能和充、放電曲線的平穩性因材料的種類不同而存在很大差異。如Li3FeN2用作LIB負極時,放電容量為150mAh/g、放電電位在1.3V(vs Li/Li+

    鋰電池碳材料負極的技術缺陷

    采用電動車輛取代燃油車輛是解決城市環境污染的最佳選擇,其中鋰離子動力電池引起了研究者的廣泛關注.為了滿足電動車輛對車載型離子動力電池的要求,研制安全性高、倍率性能好且長壽命的負極材料是其熱點和難點。商業化的鋰離子電池負極主要采用碳材料,但以碳做負極的鋰電池在應用上仍存在一些弊端:1、過充電時易析出鋰

    鋰電非碳負極材料氮化物體系屬的相關介紹

      氮化物體系屬反螢石(CaF2)或Li3N結構的化合物,具有良好的離子導電性,電極電位接近金屬鋰,可用作鋰離子電極的負極。  反螢石結構的Li-M-N(M為過渡金屬)化合物如Li7MnN4和Li3FeN2可用陶瓷法合成。即將過渡金屬氧化物和鋰氮化物(MxNx+Li3N)在1%H2+99%N2氣氛中

    關于鋰電池負極碳材料等的相關研究

      研究工作主要集中在碳材料和具有特殊結構的其它金屬氧化物。石墨、軟碳、中相碳微球已在國內有開發和研究,硬碳、碳納米管、巴基球C60等多種碳材料正在被研究中[18][19][20][21][22][23]。日本Honda Researchand Development Co.,Ltd的K.Sato等

    鋰電池負極材料涂碳銅箔的性能優勢

      1、顯著提高電池組使用一致性,大幅降低電池組成本。  · 明顯降低電芯動態內阻增幅 ;  · 提高電池組的壓差一致性 ;  · 延長電池組壽命 。  2、提高活性材料和集流體的粘接附著力,降低極片制造成本。如:  · 改善使用水性體系的正極材料和集電極的附著力;  · 改善納米級或亞微米級的正極

    常見的鋰電池負極材料介紹

    1、碳負極材料此種類型的材料無論是能量密度、循環能力,還是成本投入等方面,其都處于表現均衡的負極材料,同時也是促進鋰離子電池誕生的主要材料,碳材料可以被劃分為兩大類別,即石墨化碳材料以及硬碳。其中,前者主要包括人造石墨以及天然石墨。2、天然石墨天然石墨也具有諸多優勢,其結晶度較高、可嵌入的位置較多,

    關于鋰電池負極材料納米材料的介紹

      納米材料是指在三維空間中至少有一維處于納米尺寸(1-100 nm)或由它們作為基本單元構成的材料,這大約相當于10~1000個原子緊密排列在一起的尺度。  "納米復合聚氨酯合成革材料的功能化"和"納米材料在真空絕熱板材中的應用"2項合作項目取得較大進展。具有負離子釋放功能且釋放量可達2000以上

    鋰電池的負極材料的分類介紹

    鋰電池負極材料按照所用活性物質,可分為碳材和非碳材兩大類:碳系材料包括石墨材料(天然石墨、人造石墨以及中間相碳位球)與其它碳系(硬碳、軟碳和石墨烯)兩條路線。石墨烯負極材料又可進一步分為天然石墨、人造石墨、復合石墨和中間相碳微球。其中,天然石墨負極材料的上游為天然石墨礦石,人造石墨負極材料的上游包括

    鋰電池負極材料大體分類介紹

      第一種是碳負極材料:  目前已經實際用于鋰離子電池的負極材料基本上都是碳素材料,如人工石墨、天然石墨、中間相碳微球、石油焦、碳纖維、熱解樹脂碳等。  第二種是錫基負極材料:  錫基負極材料可分為錫的氧化物和錫基復合氧化物兩種。氧化物是指各種價態金屬錫的氧化物。目前沒有商業化產品。  第三種是含鋰

    鋰電池錫基負極材料介紹

    錫基負極材料:錫基負極材料可分為錫的氧化物和錫基復合氧化物兩種。氧化物是指各種價態金屬錫的氧化物。沒有商業化產品。

    關于鋰電池負極材料納米材料的結構介紹

      納米結構是以納米尺度的物質單元為基礎按一定規律構筑或營造的一種新體系。它包括納米陣列體系、介孔組裝體系、薄膜嵌鑲體系。對納米陣列體系的研究集中在由金屬納米微粒或半導體納米微粒在一個絕緣的襯底上整齊排列所形成的二位體系上。而納米微粒與介孔固體組裝體系由于微粒本身的特性,以及與界面的基體耦合所產生的

    鋰電池負極材料納米材料的制備方法介紹

      (1)惰性氣體下蒸發凝聚法。通常由具有清潔表面的、粒度為1-100nm的微粒經高壓成形而成,納米陶瓷還需要燒結。國外用上述惰性氣體蒸發和真空原位加壓方法已研制成功多種納米固體材料,包括金屬和合金,陶瓷、離子晶體、非晶態和半導體等納米固體材料。我國也成功的利用此方法制成金屬、半導體、陶瓷等納米材料

    關于鋰電池負極材料的性能介紹

      負極材料的電導率一般都較高,則選擇電位盡可能接近鋰電位的可嵌入鋰的化合物,如各種碳材料和金屬氧化物。可逆地嵌入脫嵌鋰離子的負極材料要求具有:  1)在鋰離子的嵌入反應中自由能變化小;  2)鋰離子在負極的固態結構中有高的擴散率;  3)高度可逆的嵌入反應;  4)有良好的電導率;  5)熱力學上

    鋰電池碳素負極材料的結構介紹

    碳材料根據其結構特性可分成兩類:易石墨化碳及難石墨化碳,也就是通常所說的軟碳和硬碳材料。通常硬碳的晶粒較小,晶粒取向不規則,密度較小,表面多孔,晶面間距(d002)較大,一般在0.35~0.40nm,而軟碳則為0.35nm左右。軟碳主要有碳纖維、碳微球、石油焦等。軟碳主要有碳纖維、碳微球、石油焦等。

    鋰電池負極集流體材料的介紹

      負極集流體材料一般用銅箔(10μm~20μm厚)。  銅箔作為一種有色金屬箔體材料,用于鋰電池負極集流體,主要要求其以下三項技術指標:(1)厚度(8μm~12μm);(2)拉伸強度( >30kg/mm2);(3)延伸率( >5%)  鋰電池用銅箔大致可分為兩種:(1)壓延銅箔(光面);(2)電解

    鋰電負極材料納米碳管的功能介紹

      納米負極材料主要是希望利用材料的納米特性,減少充放電過程中體積膨脹和收縮對結構的影響,從而改進循環性能。實際應用表明:納米特性的有效利用可改進這些負極材料的循環性能,然而離實際應用還有一段距離。關鍵原因是納米粒子隨循環的進行而逐漸發生結合,從而又失去了納米粒子特有的性能,導致結構被破壞,可逆容量

    關于鋰電池負極材料納米材料的歷史特點介紹

      第一階段(1990年以前):主要是在實驗室探索用各種方法制備各種材料的納米顆粒粉體或合成塊體,研究評估表征的方法,探索納米材料不同于普通材料的特殊性能;研究對象一般局限在單一材料和單相材料,國際上通常把這種材料稱為納米晶或納米相材料。  第二階段(1990~1994年):人們關注的熱點是如何利用

    鋰電池負極材料的分類

    負極材料:多采用石墨。新的研究發現鈦酸鹽可能是更好的材料。負極反應:放電時鋰離子脫嵌,充電時鋰離子嵌入。?充電時:xLi+ + xe- + 6C → LixC6放電時:LixC6 → xLi+ + xe- + 6C

    鋰電池的負極材料研究

    一般而言,鋰電池負極材料由活性物質、粘結劑和添加劑制成糊狀膠合劑后,涂抹在銅箔兩側,經過干燥、滾壓制得,作用是儲存和釋放能量,主要影響鋰電池的循環性能等指標。負極材料按照所用活性物質,可分為碳材和非碳材兩大類:碳系材料包括石墨材料(天然石墨、人造石墨以及中間相碳位球)與其它碳系(硬碳、軟碳和石墨烯)

    鋰電池負極材料的研究

    作為鋰二次電池的負極材料,首先是金屬鋰,隨后才是合金。但是,它們無法解決鋰離子電池的安全性能,這才誕生了以碳材料為負極的鋰離子電池。  聚合物鋰離子電池的負極材料與鋰離子電池基本上相同。從前面講過聚合物鋰離子電池的發展過程可以看出,自鋰離子電池的商品化以來,研究的負極材料有以下幾種:石墨化碳材料、無

    鋰電池的負極材料分類

    負極材料按照所用活性物質,可分為碳材和非碳材兩大類:碳系材料包括石墨材料(天然石墨、人造石墨以及中間相碳位球)與其它碳系(硬碳、軟碳和石墨烯)兩條路線;非碳系材料可細分為鈦基材料、硅基材料、錫基材料、氮化物和金屬鋰等。

    鋰電池負極材料的研究

    作為鋰二次電池的負極材料,首先是金屬鋰,隨后才是合金。但是,它們無法解決鋰離子電池的安全性能,這才誕生了以碳材料為負極的鋰離子電池。  聚合物鋰離子電池的負極材料與鋰離子電池基本上相同。從前面講過聚合物鋰離子電池的發展過程可以看出,自鋰離子電池的商品化以來,研究的負極材料有以下幾種:石墨化碳材料、無

    鋰電池負極材料的分類

    分碳材料和非碳材料兩類。人造石墨和天然石墨是當前最主流的兩大高純石墨類碳材料負級,復合型高純石墨與中間相碳納米粒子通過摻 雜改性材料和化學物質解決生產加工做成。非碳材料包含硅基、鈦基、錫基、氮化合物和金屬鋰,這種新 型負級至今仍處產品研發或較小規模生產制造環節,并未完成商業化的。

    鋰電池制造中常用的負極材料介紹

    在負極材料當中,目前負極材料重要以天然石墨和人造石墨為主。正在探索的負極材料有氮化物、PAS、錫基氧化物、錫合金、納米負極材料,以及其他的一些金屬間化合物等。負極材料作為鋰離子電池四大組成材料之一,在提高電池的容量以及循環性能方面起到了重要用途,處于鋰離子電池產業中游的核心環節。

  • <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>
  • 调性视频