• <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>

  • 赤霉素信號途徑調控作物氮肥高效利用研究獲進展

    農業生產中,大量施用氮肥是水稻、小麥等農作物增產的重要措施。然而,氮肥的使用量逐年增加并未帶來農作物產量的大幅提高,經濟效益和生態效益反而呈下降趨勢。因此,培育氮肥高效利用的新品種是降低生產成本、減少環境污染、綠色高效提高水稻、小麥等農作物產量的有效途徑。 8月16日,英國《自然》(Nature)雜志以研究長文形式在線發表了中國科學院遺傳與發育生物學研究所傅向東研究組關于赤霉素信號傳導途徑調控植物氮肥高效利用的最新研究進展。該項成果進一步深入了對于植物生長與代謝協同調控機制的認識,從而找到了一條在保證糧食總產量不斷提高的同時,提高了氮肥利用效率,降低了生產投入成本,減少了對環境造成的污染的可持續發展農業新途徑。 上世紀60年代,以半矮化育種為特征的第一次“綠色革命”,使得全世界水稻和小麥產量翻了一番。“綠色革命”最明顯的特征是水稻和小麥植株半矮化,提高了收獲指數,解決了因大量施肥導致的植株倒伏和減產問題,從而實現了水稻和......閱讀全文

    赤霉素信號途徑調控作物氮肥高效利用研究獲進展

      農業生產中,大量施用氮肥是水稻、小麥等農作物增產的重要措施。然而,氮肥的使用量逐年增加并未帶來農作物產量的大幅提高,經濟效益和生態效益反而呈下降趨勢。因此,培育氮肥高效利用的新品種是降低生產成本、減少環境污染、綠色高效提高水稻、小麥等農作物產量的有效途徑。  8月16日,英國《自然》(Natur

    我國學者發現提高NGR5和GRF4表達量可提高水稻氮肥利用率

      上世紀60年代,以矮化育種為標志的“綠色革命”使水稻和小麥具有耐高肥、抗倒伏和高產的優良特性,但同時也存在氮肥利用效率低的缺點,其產量增加對化肥的依賴性高。持續大量的氮肥投入不僅增加種植成本,還導致環境污染。農業農村部公布2019年我國三大糧食作物的化肥利用率為39.2%,遠低于世界平均水平,更

    新基因定義下一場“綠色革命”

      “中國三大主要糧食作物的化肥利用率只有39.2%,絕大部分釋放到土地和空氣中,造成環境污染。如何‘減肥增效’是當前農業可持續發展亟待解決的重大問題。” 中國科學院遺傳與發育生物學研究所研究員傅向東在接受《中國科學報》采訪時說。  2月7日,《科學》雜志以封面文章的形式,發表傅向東團隊關于赤霉素和

    新基因定義下一場“綠色革命”

      “中國三大主要糧食作物的化肥利用率只有39.2%,絕大部分釋放到土地和空氣中,造成環境污染。如何‘減肥增效’是當前農業可持續發展亟待解決的重大問題。” 中國科學院遺傳與發育生物學研究所研究員傅向東在接受《中國科學報》采訪時說。  2月7日,《科學》雜志以封面文章的形式,發表傅向東團隊關于赤霉素和

    什么是赤霉素

    1926年,日本人黑澤英一從對水稻惡苗病的研究中發現了另外一種植物激素——赤霉素。日本人發現,稻田中總有一些水稻會染上一種瘋長病,表現為植株生長異常旺盛,但結實率很低。這樣的水稻不但自己生長要消耗大量的肥、水,還影響了周圍水稻的采光、通風和吸取營養,因此被稱為惡苗,這種會在植物間傳染的病就被稱為惡苗

    什么是赤霉素

    GA3是赤霉素的一種,又稱“九二O”。赤霉素是1935年日本科學家藪田在研究水稻惡苗病時發現的,它是指具有赤霉烷骨架,并能刺激細胞伸長和分裂的一類化合物的總稱。到1998年為止,已發現121種赤霉素,分別稱為GA1~GA121。可以說,赤霉素是植物激素中種類最多的一種激素。但是,在生產實踐中廣泛應用

    赤霉素是什么

    赤霉素,是廣泛存在的一類植物激素。其化學結構屬于二萜類酸,由四環骨架衍生而得。可刺激葉和芽的生長。已知的赤霉素類至少有38種。赤霉素應用于農業生產,在某些方面有較好效果。例如提高無籽葡萄產量,打破馬鈴薯休眠;在釀造啤酒時,用GA3來促進制備麥芽糖用的大麥種子的萌發;當晚稻遇陰雨低溫而抽穗遲緩時,用赤

    赤霉素對α實驗

    一、原理 淀粉性種子在萌動過程中,胚釋放出來的赤霉素能誘導糊粉層細胞中α-淀粉酶基因的表達,引起α-淀粉酶生物合成,并分泌到胚乳中催化淀粉水解為糖。通過碘試法比色測定淀粉在酶催化反應過程中的消耗量,可以定量分析α-淀粉酶的活力。 二、材料、儀器設備 ?及試劑 (一)材料:大麥、小麥

    赤霉素是什么

    赤霉素,是廣泛存在的一類植物激素。其化學結構屬于二萜類酸,由四環骨架衍生而得。可刺激葉和芽的生長。已知的赤霉素類至少有38種。赤霉素應用于農業生產,在某些方面有較好效果。例如提高無籽葡萄產量,打破馬鈴薯休眠;在釀造啤酒時,用GA3來促進制備麥芽糖用的大麥種子的萌發;當晚稻遇陰雨低溫而抽穗遲緩時,用赤

    中科院傅向東研究組歷時六年攻關,最新發表Nature文章

    在農業生產中,大量施用氮肥一直是水稻、小麥等農作物增產的重要措施。然而,氮肥的使用量逐年增加并未帶來農作物產量的大幅提高,經濟效益和生態效益反而呈下降趨勢。因此,培育氮肥高效利用的新品種是降低生產成本、減少環境污染、綠色高效提高水稻、小麥等農作物產量的一種有效途經。8月16日,英國《自然》雜志以研究

    赤霉素的存在部位

    高等植物中的赤霉素主要存在于幼根、幼葉、幼嫩種子和果實等部位。由甲羥戊酸經貝殼杉烯等中間物合成。后證明其中含有一種能誘導細胞分裂的成分,赤霉素在植物體內運輸時無極性,通常由木質部向上運輸,由韌皮部向下或雙向運輸。

    赤霉素的作用介紹

    赤霉素最顯著的效應是促進植物莖伸長。無合成赤霉素的遺傳基因的矮生品種,用赤霉素處理可以明顯地引起莖稈伸長。赤霉素也促進禾本科植物葉的伸長。在蔬菜生產上,常用赤霉素來提高莖葉用蔬菜的產量。一些需低溫和長日照才能開花的二年生植物,干種子吸水后,用赤霉素處理可以代替低溫作用,使之在第1年開花。赤霉素還可促

    赤霉素的主要作用

    赤霉素最顯著的效應是促進植物莖伸長。無合成赤霉素的遺傳基因的矮生品種,用赤霉素處理可以明顯地引起莖稈伸長。赤霉素也促進禾本科植物葉的伸長。在蔬菜生產上,常用赤霉素來提高莖葉用蔬菜的產量。一些需低溫和長日照才能開花的二年生植物,干種子吸水后,用赤霉素處理可以代替低溫作用,使之在第1年開花。赤霉素還可促

    赤霉素的有關歷史

    1926年日本黑澤在水稻惡苗病的研究中,發現感病稻苗的徒長和黃化現象與赤霉菌(Gibberellafujikuroi)有關。1935年藪田和住木從赤霉菌的分泌物中分離出了有生理活性的物質,定名為赤霉素(GA)。從50年代開始,英、美的科學工作者對赤霉素進行了研究,現已從赤霉菌和高等植物中分離出60多

    赤霉素的主要種類

    自由型不以鍵的形式與其他物質結合,易被有機溶劑提取出來,具有生理活性。結合型和其他物質(如葡萄糖)結合,要通過酸水解或蛋白酶分解才能釋放出自由赤霉素,無生理活性。束縛型這是GA的一種儲藏形式。種子成熟時,GA轉化為束縛型貯存,而在種子萌發時,又轉變成游離型而發揮其調節作用。

    赤霉素的存在形式

    高等植物中的赤霉素主要存在于幼根、幼葉、幼嫩種子和果實等部位。由甲羥戊酸經貝殼杉烯等中間物合成。后證明其中含有一種能誘導細胞分裂的成分,赤霉素在植物體內運輸時無極性,通常由木質部向上運輸,由韌皮部向下或雙向運輸。

    赤霉素的研究應用

    1926年日本黑澤在水稻惡苗病的研究中,發現感病稻苗的徒長和黃化現象與赤霉菌(Gibberellafujikuroi)有關。1935年藪田和住木從赤霉菌的分泌物中分離出了有生理活性的物質,定名為赤霉素(GA)。從50年代開始,英、美的科學工作者對赤霉素進行了研究,現已從赤霉菌和高等植物中分離出60多

    赤霉素的主要作用

    赤霉素最顯著的效應是促進植物莖伸長。無合成赤霉素的遺傳基因的矮生品種,用赤霉素處理可以明顯地引起莖稈伸長。赤霉素也促進禾本科植物葉的伸長。在蔬菜生產上,常用赤霉素來提高莖葉用蔬菜的產量。一些需低溫和長日照才能開花的二年生植物,干種子吸水后,用赤霉素處理可以代替低溫作用,使之在第1年開花。赤霉素還可促

    赤霉素的基本結構

    赤霉素都含有赤霉素烷骨架,它的化學結構比較復雜,是雙萜化合物。在高等植物中赤霉素的前體一般認為是貝殼杉烯。赤霉素的基本結構是赤霉素烷,有4個環。在赤霉素烷上,由于雙鍵、羥基數目和位置不同,形成了各種赤霉素 。自由態赤霉素是具19C或20C的一、二或三羧酸。結合態赤霉素多為萄糖苷或葡糖基酯,易溶于水。

    赤霉素的作用介紹

    赤霉素最顯著的效應是促進植物莖伸長。無合成赤霉素的遺傳基因的矮生品種,用赤霉素處理可以明顯地引起莖稈伸長。赤霉素也促進禾本科植物葉的伸長。在蔬菜生產上,常用赤霉素來提高莖葉用蔬菜的產量。一些需低溫和長日照才能開花的二年生植物,干種子吸水后,用赤霉素處理可以代替低溫作用,使之在第1年開花。赤霉素還可促

    赤霉素的存在部位

    高等植物中的赤霉素主要存在于幼根、幼葉、幼嫩種子和果實等部位。由甲羥戊酸經貝殼杉烯等中間物合成。后證明其中含有一種能誘導細胞分裂的成分,赤霉素在植物體內運輸時無極性,通常由木質部向上運輸,由韌皮部向下或雙向運輸。

    研究發現新“綠色革命”作物關鍵基因

    中國水稻種植面積占世界水稻種植面積的20%,但氮肥用量卻占全球用量的37%。持續大量的氮肥投入,不僅浪費了資源和能源,還加劇了土壤酸化、水體富營養化和農業溫室氣體排放等一系列問題。8月16日,中國科學院遺傳與發育生物學研究所傅向東課題組關于赤霉素信號傳導途徑調控植物氮肥高效利用的最新成果在線發表于《

    研究發現新“綠色革命”作物關鍵基因

      中國水稻種植面積占世界水稻種植面積的20%,但氮肥用量卻占全球用量的37%。持續大量的氮肥投入,不僅浪費了資源和能源,還加劇了土壤酸化、水體富營養化和農業溫室氣體排放等一系列問題。8月16日,中國科學院遺傳與發育生物學研究所傅向東課題組關于赤霉素信號傳導途徑調控植物氮肥高效利用的最新成果在線發表

    研究發現新“綠色革命”作物關鍵基因

      本報訊 中國水稻種植面積占世界水稻種植面積的20%,但氮肥用量卻占全球用量的37%。持續大量的氮肥投入,不僅浪費了資源和能源,還加劇了土壤酸化、水體富營養化和農業溫室氣體排放等一系列問題。8月16日,中國科學院遺傳與發育生物學研究所傅向東課題組關于赤霉素信號傳導途徑調控植物氮肥高效利用的最新成果

    關于赤霉素的分布介紹

      廣泛分布于被子、裸子、蕨類植物、褐藻、綠藻、真菌和細菌中,多存在于生長旺盛部分,如莖端、嫩葉、根尖和果實種子。含量:1~1000ng鮮重,果實和種子(尤其是未成熟種子) 的赤霉素含量比營養器官的多兩個數量級。每個器官或組織都含有兩種以上的赤霉素,而且赤霉素的種類、數量和狀態 (自由態或結合態)都

    關于赤霉素的用途介紹

      赤霉素適合以下作物:棉花、番茄、馬鈴薯、果樹、稻、麥、大豆、煙草等,促進其生長、發芽、開花結果;能刺激果實生長,提高結實率,對棉花、蔬菜、瓜果、水稻、綠肥等有顯著的增產效果。  赤霉素最突出的生理效應是促進莖的伸長和誘導長日植物在短日條件下抽薹開花。各種植物對赤霉素的敏感程度不同。遺傳上矮生的植

    赤霉素的分布特點

    廣泛分布于被子、裸子、蕨類植物、褐藻、綠藻、真菌和細菌中,多存在于生長旺盛部分,如莖端、嫩葉、根尖和果實種子。含量:1~1000ng鮮重,果實和種子(尤其是未成熟種子) 的赤霉素含量比營養器官的多兩個數量級。每個器官或組織都含有兩種以上的赤霉素,而且赤霉素的種類、數量和狀態 (自由態或結合態)都因植

    簡述赤霉素的基本結構

      赤霉素都含有赤霉素烷骨架,它的化學結構比較復雜,是雙萜化合物。在高等植物中赤霉素的前體一般認為是貝殼杉烯。赤霉素的基本結構是赤霉素烷,有4個環。在赤霉素烷上,由于雙鍵、羥基數目和位置不同,形成了各種赤霉素 [1] 。自由態赤霉素是具19C或20C的一、二或三羧酸。結合態赤霉素多為萄糖苷或葡糖基酯

    赤霉素的發現與研究

    1926年日本黑澤在水稻惡苗病的研究中,發現感病稻苗的徒長和黃化現象與赤霉菌(Gibberellafujikuroi)有關。1935年藪田和住木從赤霉菌的分泌物中分離出了有生理活性的物質,定名為赤霉素(GA)。從50年代開始,英、美的科學工作者對赤霉素進行了研究,現已從赤霉菌和高等植物中分離出60多

    赤霉素的存在部位介紹

    高等植物中的赤霉素主要存在于幼根、幼葉、幼嫩種子和果實等部位。由甲羥戊酸經貝殼杉烯等中間物合成。后證明其中含有一種能誘導細胞分裂的成分,赤霉素在植物體內運輸時無極性,通常由木質部向上運輸,由韌皮部向下或雙向運輸。

  • <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>
  • 调性视频