• <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>

  • PKC信號通路圖

    PKC系統,又稱為磷脂肌醇信號途徑。系統由三個成員組成:受體、G蛋白和效應物。Gq蛋白也是異源三體,其α亞基上具有GTP/GDP結合位點,作用方式與cAMP系統中的G蛋白完全相同。該系統的效應物是磷酸肌醇特異的磷脂酶C-β(phosphatidylinositol-specific phospholipase C-β, PI-PLCβ),此處的β表示一種異構體。在這一信號轉導途徑中,膜受體與其相應的第一信使分子結合后,激活膜上的Gp蛋白(一種G蛋白),然后由Gq蛋白激活磷酸脂酶Cβ (phospholipase Cβ, PLC), 將膜上的脂酰肌醇4,5-二磷酸(phosphatidylinositol biphosphate, PIP2)分解為兩個細胞內的第二信使:二酰甘油( diacylglycerol, DAG)和1,4,5-三磷酸肌醇(IP3)。IP3動員細胞內鈣庫釋放Ca2+到細胞質中與鈣調蛋白結合,隨......閱讀全文

    PKC信號通路圖

    PKC系統,又稱為磷脂肌醇信號途徑。系統由三個成員組成:受體、G蛋白和效應物。Gq蛋白也是異源三體,其α亞基上具有GTP/GDP結合位點,作用方式與cAMP系統中的G蛋白完全相同。該系統的效應物是磷酸肌醇特異的磷脂酶C-β(phosphatidylinositol-specific phosph

    mTOR信號通路圖

    mTOR可對細胞外包括生長因子、胰島素、營養素、氨基酸、葡萄糖等多種刺激產生應答。它主要通過PI3K/Akt/mTOR途徑來實現對細胞生長、細胞周期等多種生理功能的調控作用。正常情況下,結節性腦硬化復合物-1(TSC-1)和TSC-2形成二聚體復合物,是小GTP酶Rheb(Ras-homolog

    MAPK/Erk信號通路圖

    MAPK,絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)是細胞內的一類絲氨酸/蘇氨酸蛋白激酶。研究證實,MAPKs信號轉導通路存在于大多數細胞內,在將細胞外刺激信號轉導至細胞及其核內,并引起細胞生物學反應(如細胞增殖、分化、轉化及凋亡等)的過程中

    Jak/Stat信號通路圖

    JAK-STAT信號通路是近年來發現的一條由細胞因子刺激的信號轉導通路,參與細胞的增殖、分化、凋亡以及免疫調節等許多重要的生物學過程。與其它信號通路相比,這條信號通路的傳遞過程相對簡單,它主要由三個成分組成,即酪氨酸激酶相關受體、酪氨酸激酶JAK和轉錄因子STAT。信號傳遞過程如下:細胞因子與相應的

    SAPK/JNK信號通路圖

    c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)又被稱為應激活化蛋白激酶(stress-activated protein kinase,SAPK),是哺乳類細胞中MAPK的另一亞類。目前,從成熟人腦細胞中已克隆了10個JNK異構體,它們分別由JNK1、JNK2和JN

    SAPK/JNK--信號通路圖

    c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)又被稱為應激活化蛋白激酶(stress-activated protein kinase,SAPK),是哺乳類細胞中MAPK的另一亞類。目前,從成熟人腦細胞中已克隆了10個JNK異構體,它們分別由JNK1、JNK2和JN

    Jak/Stat信號通路圖

    JAK-STAT信號通路是近年來發現的一條由細胞因子刺激的信號轉導通路,參與細胞的增殖、分化、凋亡以及免疫調節等許多重要的生物學過程。與其它信號通路相比,這條信號通路的傳遞過程相對簡單,它主要由三個成分組成,即酪氨酸激酶相關受體、酪氨酸激酶JAK和轉錄因子STAT。信號傳遞過程如下:細胞因子與相應的

    NFκB信號通路圖

    NF-kappaB是一個大家族,包括:RelA(p65)、c-Rel、RelB、NF-kappaB1 (p50/p105)、NF-kappaB2 (p52/p100)。其中以RelA(p65)研究最為深入。通常所說的是左邊的經典途徑,大致意思是這樣:非激活狀態下,RelA(p65)與一種名為Ikap

    T-Cell-Receptor-信號通路圖

    The ?T Cell Receptor plays a key role in the immune system. The specificity ?of the receptor is governed by the binding site formed from the mature ?a

    Toll樣受體信號通路圖

    TLR 家族成員(TLR3 除外)誘導的炎癥反應都經過一條經典的信號通路(圖 1),該通路起始于TLRs 的一段胞內保守序列—Toll/IL-1 受體同源區(Toll/IL-1receptor homologousregion,TIR).TIR可激活胞內的信號介質—白介素1受體相關蛋白激

    磷酸脂酶信號通路圖

    在這一信號轉導途徑中,膜受體與其相應的第一信使分子結合后,激活膜上的Gq蛋白(一種G蛋白),然后由Gq蛋白激活磷酸脂酶Cβ (phospholipase Cβ, PLC), 將膜上的脂酰肌醇4,5-二磷酸(phosphatidylinositol biphosphate, PIP2)分解為兩個細胞內

    血管生成(Angiogenesis)信號通路圖

    血管生成是通過人體中存在的諸多互補和復雜的信號途徑調節的.血管內皮生長因子(VEGF)-血管內皮生長因子受體(VEGFR)、血管生成素(Ang)-Tie2軸和Dll4-Notch這3個復雜的、相輔相成的信號傳導通路可在調節血管生成中發揮重要作用.VEGF與內皮細胞上的兩種受體KDR和Flt-1高親和

    B-Cell-Receptor-信號通路圖

    B cells produce immunoglobulins (Ig, antibodies) that specifically bind antigen molecules. B cells first produce a membrane-bound form of immunogl

    TGFβ/Smad-信號通路圖

    TGF-β(轉化生長因子-β)信號通路在調控干細胞活性和器官形成中發揮著重要的作用,當TGF-β信號通路各成員活性未激活時,體內會自發性發生多種癌癥,這表明TGF-β定向調節干細胞對癌癥形成也具有不可或缺的功能。TGF-β超家族包含接近30個生長和分化因子,其中有TGF-β s,活化素(activi

    G蛋白偶聯受體信號通路激活的MAPK/Erk信號通路圖

    研究證實,受體酪氨酸激酶、G蛋白偶聯的受體和部分細胞因子受體均可激活ERK信號轉導途徑。如:生長因子與細胞膜上的特異受體結合,可使受體形成二聚體,二聚化的受體使其自身酪氨酸激酶被激活;受體上磷酸化的酪氨酸又與位于胞膜上的生長因子受體結合蛋白2(Grb2)的SH2結構域相結合,而Grb2的SH3結構域

    G蛋白偶聯受體信號通路激活的MAPK/Erk信號通路圖

    研究證實,受體酪氨酸激酶、G蛋白偶聯的受體和部分細胞因子受體均可激活ERK信號轉導途徑。如:生長因子與細胞膜上的特異受體結合,可使受體形成二聚體,二聚化的受體使其自身酪氨酸激酶被激活;受體上磷酸化的酪氨酸又與位于胞膜上的生長因子受體結合蛋白2(Grb2)的SH2結構域相結合,而Grb2的SH3結構域

    p38-MAPK信號通路圖

    p38 MAPK是1993年由Brewster等人在研究高滲環境對真菌的影響時發現的[8]。以后又發現它也存在于哺乳動物的細胞內,也是MAPKs的亞類之一,其性質與JNK相似,同屬應激激活的蛋白激酶。目前已發現p38MAPK有5個異構體,分別為p38α(p38)、p38β1、p38β2、p38γ、p

    eIF2的調控信號通路圖

    mTOR可對細胞外包括生長因子、胰島素、營養素、氨基酸、葡萄糖等多種刺激產生應答。它主要通過PI3K/Akt/mTOR途徑來實現對細胞生長、細胞周期等多種生理功能的調控作用。正常情況下,結節性腦硬化復合物-1(TSC-1)和TSC-2形成二聚體復合物,是小GTP酶Rheb(Ras-homolog

    eIF2的調控信號通路圖

    mTOR可對細胞外包括生長因子、胰島素、營養素、氨基酸、葡萄糖等多種刺激產生應答。它主要通過PI3K/Akt/mTOR途徑來實現對細胞生長、細胞周期等多種生理功能的調控作用。 正常情況下,結節性腦硬化復合物-1(TSC-1)和TSC-2形成二聚體復合物,是小GTP酶Rheb(R

    SAPK/JNK信號通路圖涉及的信號分子主要包括

    CrkL,Shc,GRB2,JNK,JNK1,JNK2,JNK3,MKK4,MKK7,IRS-1,c-Abl,Bax,CrkII,TAK1,ASK1,MAPKKKs,HPK1,GCK,MEKK1,MEKK4,MLK2,MLK3,DLK,TpI-2,TAO1,TAO2,PI3Kγ,c-Jun,SOS,

    自噬的信號通路圖的組成部分

    自噬的信號通路圖可以分成2部分:巨自噬(Macroautophagy)和線粒體自噬(Mitophagy)。這2部分的又有重疊。

    Notch信號通路的通路組成介紹

    Notch基因編碼一種膜蛋白受體,由Notch受體、Notch配體(DSL蛋白)及細胞內效應器分子(CSL-DNA結合 蛋白)三部分組成。(1)Notch受體:分別為Notch 1.2.3.4種;其結構:胞外區(NEC)、跨膜區(TM)和胞內區(NICD/ICN)三部分;胞外區(NEC):其結構域包

    信號通路的分類

    一是當信號分子是膽固醇等脂質時,它們可以輕易穿過細胞膜,在細胞質內與目的受體相結合;二是當信號分子是多肽時,它們只能與細胞膜上的蛋白質等受體結合,這些受體大都是跨膜蛋白,通過構象變化,將信號從膜外domain傳到膜內的domain,然后再與下一級別受體作用,通過磷酸化等修飾化激活下一級別通路。

    Hippo信號通路概述

    Hippo 信號通路,也稱為Salvador / Warts / Hippo(SWH)通路,命名主要源于果蠅中的蛋白激酶Hippo(Hpo),是通路中的關鍵調控因子。該通路由一系列保守激酶組成,主要是通過調控細胞增殖和凋亡來控制器官大小。Hippo信號通路是一條抑制細胞生長的通路。哺乳動物中,Hip

    Wnt/βcatenin信號通路

    大鼠肝癌模型法 ? ? ? ? ? ? 實驗方法原理 1. Wnt/β-catenin信號轉導通路是一條在生物進化中極為保守的通路。在正常的體細胞中,β-catenin只是作為一

    信號通路的概念

    信號通路,信號轉導,signal pathway狹義能夠把胞外的分子信號經過細胞膜傳到細胞胞內然后發生效應的一系列酶促反應通路。基礎科研中不限定從胞外到胞內,指信息從一個分子傳到另外的分子的過程。信號通路本質上就是前人研究的比較透徹的一些分子,包括他的調控方式的一個總結。

    Wnt/βcatenin信號通路

    大鼠肝癌模型法 ? ? ? ? ? ? 實驗方法原理 1. Wnt/β-catenin信號轉導通路是一條在生物進化中極為保守的通路。在正常的體細胞中,β-catenin只是作為一

    Wnt/βcatenin信號通路

    Wnt /β-catenin信號轉導通路是一條在生物進化中極為保守的通路。在正常的體細胞中,β-catenin只是作為一種細胞骨架蛋白在胞膜處與E-cadherin形成復合體對維持同型細胞的黏附、防止細胞的移動發揮作用。只有當細胞外Wnt信號分子與細胞膜上特異性受體Frizzled蛋白結合激

    Wnt信號通路的信號途徑介紹

    經典的Wnt途徑(Wnt /β-連環蛋白途徑)導致基因轉錄的調節,并且被認為部分地由SPATS1基因負調節。Wnt /β-連環蛋白途徑是Wnt途徑中的一種,該途徑會導致β-連環蛋白在細胞質中積累并最終會作為屬于TCF的轉錄因子的轉錄共激活因子/ LEF家族易位至細胞核。沒有Wnt,β-連環蛋白不會在

    SAPK/JNK信號級聯信號通路相關CRKL

    該基因編碼一個包含sh2和sh3(SRC同源)結構域的蛋白激酶,該結構域已被證明激活ras和jun激酶信號通路并以ras依賴的方式轉化成纖維細胞。是bcr-abl酪氨酸激酶的底物,在bcr-abl的成纖維細胞轉化中起作用,可能致癌。This gene encodes a protein kinase

  • <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>
  • 调性视频