BARD1泛素化核小體在促進同源重組修復過程中的重要作用
DNA雙鏈斷裂(DNA double-strand breaks,DSBs)是真核細胞中最為嚴重的DNA損傷類型之一,單個裸露的DSB即可誘發細胞凋亡。DSB主要通過非同源末端連接(NHEJ,non-homologous end-joining)和同源重組(HR,homologous recombination)兩種方式進行修復。HR修復發生在S和G2期,受損的DNA以姐妹染色單體上的同源序列為模板進行修復,因此,HR修復是十分精確的修復方式,一旦發生缺陷將導致基因組不穩定,引起包括腫瘤在內的多種疾病發生。 乳腺癌易感基因BRCA1編碼的蛋白促進DSB選擇精確的HR修復方式,并對于維持基因組穩定性至關重要。攜帶BRCA1種系突變的個體一生累計乳腺癌發病風險高達80%,卵巢癌發病風險也高達40%~60%。近年來在攜帶BRCA1或BRCA2突變的卵巢癌和乳腺癌治療中得到廣泛應用的PARP抑制劑(PARPi)就是利用“合成致死”......閱讀全文
BARD1泛素化核小體在促進同源重組修復過程中的重要作用
DNA雙鏈斷裂(DNA double-strand breaks,DSBs)是真核細胞中最為嚴重的DNA損傷類型之一,單個裸露的DSB即可誘發細胞凋亡。DSB主要通過非同源末端連接(NHEJ,non-homologous end-joining)和同源重組(HR,homologous recom
BRCA1BARD1復合物特異識別泛素化核小體促進同源重組修復
DNA雙鏈斷裂(DNA double-strand breaks,DSBs)是真核細胞中最嚴重的DNA損傷類型之一,單個裸露的DSB即可誘發細胞凋亡。DSB主要通過非同源末端連接(NHEJ,non-homologous end-joining)和同源重組(HR,homologous recomb
核小體的原理
人們接著用化學交聯、高鹽分離組蛋白,以及X衍射等方法進一步研究組蛋白多聚體的結構、排列以及怎樣和DNA結合的,從而建立了核小體模型。1984年Klug和Butler進行了修正。核小體的構造可用圖表示:每一個核小體結合的DNA總量為200bp左右,一般在150~250變化范圍(micrococcal
核小體的構造
核小體的構造可用圖表示:每一個核小體結合的DNA總量為200bp左右,一般在150~250變化范圍(micrococcal nuclease)輕微消解染色質而得知的。連接兩個核小體的連接DNA?(linker DNA) 是最容易受到這種酶的作用,因此微球菌核酸酶在連接DNA處被切斷,此時每個重復單位
核小體的概念
核小體是由DNA和組蛋白形成的染色質基本結構單位。每個核小體由146bp的DNA纏繞組蛋白八聚體1.75圈形成。核小體核心顆粒之間通過50bp左右的連接DNA相連。H1結合在盤繞在八聚體上的DNA雙鏈開口處,核小體的形狀類似一個扁平的碟子或一個圓柱體,此時DNA的長度壓縮7倍,稱染色質纖維。染色質就
核小體識別和泛素化機制,有助開發更好的癌癥治療方法
在一項新的研究中,來自美國梅奧診所的研究人員利用先進的成像技術,對BRCA1-BARD1蛋白復合物有了前所未有的了解,該復合物在乳腺癌或卵巢癌患者中經常發生突變。這項研究確定了BRCA1-BARD1功能的多個方面,為未來的轉化研究、癌癥預防工作和藥物開發提供了支持。相關研究結果于2021年7月2
核小體有哪些特性?
有兩項關于AnuA重要評論表明這種抗體對SLE和DIL具有敏感性和特異性,并且AnuA的存在通常在SLE與腎小球腎炎患者中相聯系。AnuA較抗DNA具有更高的敏感性。如果陰陽性分割點升高,能使抗核小體對狼瘡更加敏感。由于核小體抗原純化技術的改進,提高了AnuA對SLE患者的診斷特異性。研究結果表
核小體的監測方法
許多不同的技術已被用于檢測AnuA,除了LE細胞試驗以外,還有染色質包被的串珠乳膠凝集試驗,以及免疫沉淀(用天然組織蛋白重組酸萃取的組織部分和ELISA法都已被使用。早期的研究用“脫氧核苷蛋白”作抗原研制出一種孵育在1M生理鹽水中的染色質中的預備品,但未得到明確鑒定。后期報道已有更好的方法來鑒定該預
關于核小體的簡介
核小體是由DNA和組蛋白形成的染色質基本結構單位。每個核小體由146bp的DNA纏繞組蛋白八聚體1.75圈形成。核小體核心顆粒之間通過50bp左右的連接DNA相連。H1結合在盤繞在八聚體上的DNA雙鏈開口處,核小體的形狀類似一個扁平的碟子或一個圓柱體,此時DNA的長度壓縮7倍,稱染色質纖維。染色
核小體的監測方法
許多不同的技術已被用于檢測AnuA,除了LE細胞試驗以外,還有染色質包被的串珠乳膠凝集試驗,以及免疫沉淀(用天然組織蛋白重組酸萃取的組織部分和ELISA法都已被使用。早期的研究用“脫氧核苷蛋白”作抗原研制出一種孵育在1M生理鹽水中的染色質中的預備品,但未得到明確鑒定。后期報道已有更好的方法來鑒定該預
核小體的基本特性
有兩項關于AnuA重要評論表明這種抗體對SLE和DIL具有敏感性和特異性,并且AnuA的存在通常在SLE與腎小球腎炎患者中相聯系。AnuA較抗DNA具有更高的敏感性。如果陰陽性分割點升高,能使抗核小體對狼瘡更加敏感。由于核小體抗原純化技術的改進,提高了AnuA對SLE患者的診斷特異性。研究結果表明,
核小體的原理簡介
人們接著用化學交聯、高鹽分離組蛋白,以及X衍射等方法進一步研究組蛋白多聚體的結構、排列以及怎樣和DNA結合的,從而建立了核小體模型。1984年Klug和Butler進行了修正。核小體的構造可用圖表示:每一個核小體結合的DNA總量為200bp左右,一般在150~250變化范圍(micrococca
核小體的監測方法
許多不同的技術已被用于檢測AnuA,除了LE細胞試驗以外,還有染色質包被的串珠乳膠凝集試驗,以及免疫沉淀(用天然組織蛋白重組酸萃取的組織部分和ELISA法都已被使用。早期的研究用“脫氧核苷蛋白”作抗原研制出一種孵育在1M生理鹽水中的染色質中的預備品,但未得到明確鑒定。后期報道已有更好的方法來鑒定該預
什么是核小體核心?
中文名稱核小體核心英文名稱nucleosome core定 義由4種組蛋白各兩分子組成的八聚體結構。應用學科遺傳學(一級學科),細胞遺傳學(二級學科)
關于核小體的概述
核小體是染色質的基本結構單位,由DNA和H1、H2A、H2B、H3和H4等5種組蛋白(histone,H)構成。兩分子的H2A、H2B、H3和H4形成一個組蛋白八聚體,約200 bp的DNA分子盤繞在組蛋白八聚體構成的核心結構外面1.75圈形成了一個核小體的核心顆粒(core particle)
核小體裝配的概念
中文名稱核小體裝配英文名稱nucleosome assembly定 義在核小體裝配因子調節下,由DNA鏈和組蛋白組裝成核小體的過程。裝配先以兩分子H3/H4組蛋白構成的四聚體與DNA結合,再結合上兩分子H2A/H2B組蛋白構成的四聚體,形成核小體核心顆粒,再與H1組蛋白連接形成核小體。應用學科生物
DNA損傷修復信號通路相關因子BARD1
這個基因編碼一種與BRCA1的N端區域相互作用的蛋白質。除了在體內和體外結合BRCA1的能力外,它還與BRCA1最保守的2個區域具有同源性:N端環基序和C端BRCT域。環基序是一個富含半胱氨酸的序列,存在于多種調節細胞生長的蛋白質中,包括腫瘤抑制基因和顯性原癌基因的產物。該蛋白還含有3個串聯錨蛋白重
核小體的臨床意義
抗核小體抗體比抗dsDNA抗體、抗組蛋白抗體更早出現于系統性紅斑狼瘡的早期,并且特異性較高。陽性率為50-90%,特異性>98%。每個核小體單位包括200bp左右的DNA超螺旋和一個組蛋白八聚體及一個分子H1;組蛋白八聚體構成核小體的盤狀核心結構;146bp的DNA分子超螺旋盤繞組蛋白八聚體1.75
核小體核心顆粒的定義
中文名稱核小體核心顆粒英文名稱nucleosome core particle定 義由長度為146 bp的DNA區段與各兩分子的H3/H4/H2A/H2B組蛋白八聚體組成。應用學科生物化學與分子生物學(一級學科),核酸與基因(二級學科)
細胞化學詞匯核小體裝配
中文名稱:核小體裝配英文名稱:nucleosome assembly定 義:在核小體裝配因子調節下,由DNA鏈和組蛋白組裝成核小體的過程。裝配先以兩分子H3/H4組蛋白構成的四聚體與DNA結合,再結合上兩分子H2A/H2B組蛋白構成的四聚體,形成核小體核心顆粒,再與H1組蛋白連接形成核小體。應用學
核小體的臨床意義
抗核小體抗體比抗dsDNA抗體、抗組蛋白抗體更早出現于系統性紅斑狼瘡的早期,并且特異性較高。陽性率為50-90%,特異性>98%。每個核小體單位包括200bp左右的DNA超螺旋和一個組蛋白八聚體及一個分子H1;組蛋白八聚體構成核小體的盤狀核心結構;146bp的DNA分子超螺旋盤繞組蛋白八聚體1.75
核小體的臨床意義
抗核小體抗體比抗dsDNA抗體、抗組蛋白抗體更早出現于系統性紅斑狼瘡的早期,并且特異性較高。陽性率為50-90%,特異性>98%。每個核小體單位包括200bp左右的DNA超螺旋和一個組蛋白八聚體及一個分子H1;組蛋白八聚體構成核小體的盤狀核心結構;146bp的DNA分子超螺旋盤繞組蛋白八聚體1.75
核小體的臨床意義
抗核小體抗體比抗dsDNA抗體、抗組蛋白抗體更早出現于系統性紅斑狼瘡的早期,并且特異性較高。陽性率為50-90%,特異性>98%。每個核小體單位包括200bp左右的DNA超螺旋和一個組蛋白八聚體及一個分子H1;組蛋白八聚體構成核小體的盤狀核心結構;146bp的DNA分子超螺旋盤繞組蛋白八聚體1.75
什么是核小體核心顆粒?
中文名稱核小體核心顆粒英文名稱nucleosome core particle定 義由長度為146 bp的DNA區段與各兩分子的H3/H4/H2A/H2B組蛋白八聚體組成。應用學科生物化學與分子生物學(一級學科),核酸與基因(二級學科)
核小體的臨床意義
抗核小體抗體比抗dsDNA抗體、抗組蛋白抗體更早出現于系統性紅斑狼瘡的早期,并且特異性較高。陽性率為50-90%,特異性>98%。每個核小體單位包括200bp左右的DNA超螺旋和一個組蛋白八聚體及一個分子H1;組蛋白八聚體構成核小體的盤狀核心結構;146bp的DNA分子超螺旋盤繞組蛋白八聚體1.75
核小體的模型形成原理
人們接著用化學交聯、高鹽分離組蛋白,以及X衍射等方法進一步研究組蛋白多聚體的結構、排列以及怎樣和DNA結合的,從而建立了核小體模型。1984年Klug和Butler進行了修正。核小體的構造可用圖表示:每一個核小體結合的DNA總量為200bp左右,一般在150~250變化范圍(micrococcal
核小體的結構及功能
核小體是由DNA和組蛋白形成的染色質基本結構單位。每個核小體由146bp的DNA纏繞組蛋白八聚體1.75圈形成。核小體核心顆粒之間通過50bp左右的連接DNA相連。H1結合在盤繞在八聚體上的DNA雙鏈開口處,核小體的形狀類似一個扁平的碟子或一個圓柱體,此時DNA的長度壓縮7倍,稱染色質纖維。染色質就
細胞化學詞匯核小體核心顆粒
中文名稱:核小體核心顆粒英文名稱:nucleosome core particle定 義:由長度為146 bp的DNA區段與各兩分子的H3/H4/H2A/H2B組蛋白八聚體組成。應用學科:生物化學與分子生物學(一級學科),核酸與基因(二級學科)
核小體核心的基本概念
中文名稱核小體核心英文名稱nucleosome core定 義由4種組蛋白各兩分子組成的八聚體結構。應用學科遺傳學(一級學科),細胞遺傳學(二級學科)
核小體的重要意義介紹
在80%的MRL/lprDIL小鼠中可產生核小體特異性抗體,該自身抗體產生早,先于其他抗核抗體,與腎小球腎炎有關。SLE患者多克隆核小體特異性自身抗體的抗原反應與鼠類SLE模型表現相似,核小體在SLE中作為主要自身抗原已得到證實。靶器官中免疫復合物的沉積和炎性介質(包括補體)的大量活化是引起SL