• <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>

  • 藻類高效“吸碳”原理揭開

    科技日報北京1月23日電 (記者李楊)據《日本經濟新聞》報道,京都大學山野隆志副教授帶領的研究團隊發現,與吸收二氧化碳息息相關的“LCIB”蛋白質能夠根據水中二氧化碳濃度的不同,在葉綠體內的不同部位發揮作用以便高效吸收二氧化碳。專家認為,該特性或許能夠運用在其他農作物的品種改良之中。山野隆志團隊圍繞生存在水中的藻類為何能在二氧化碳低濃度環境中維持光合作用這一課題進行了研究,并發現了其中的部分奧秘。研究團隊使用衣藻屬(一種單細胞綠藻)來仔細觀察“LCIB”蛋白質在不同的二氧化碳濃度環境中所展現出的反應,得到了不同的觀測結果。當水中二氧化碳濃度較低時,“LCIB”蛋白質就集聚在能夠促進吸收二氧化碳的酶附近,去捕捉那些沒能被酶吸收的二氧化碳。而在水中二氧化碳濃度較高時,“LCIB”蛋白質就擴散到葉綠體中,從細胞的外部吸收二氧化碳。山野隆志稱,“蛋白質的序列信息不變,但其作用方式發生了變化”。眾所周知,植物能夠吸收太陽光進行光合作用,將......閱讀全文

    藻類高效“吸碳”原理揭開

    科技日報北京1月23日電 (記者李楊)據《日本經濟新聞》報道,京都大學山野隆志副教授帶領的研究團隊發現,與吸收二氧化碳息息相關的“LCIB”蛋白質能夠根據水中二氧化碳濃度的不同,在葉綠體內的不同部位發揮作用以便高效吸收二氧化碳。專家認為,該特性或許能夠運用在其他農作物的品種改良之中。山野隆志團隊圍繞

    讓光合作用藻類為蝌蚪大腦供氧

      青蛙在水里和陸地上過著“雙城”生活,它們一生中會使用很多呼吸技巧——借助鰓、肺和皮膚。  現在,德國科學家已經開發出另一種方法,通過將藻類引入蝌蚪的血液為其提供氧氣,從而幫助蝌蚪“呼吸”。10月13日,發表在《交叉科學》上的這種方法,能提供足夠氧氣有效地拯救缺氧蝌蚪大腦中的神經元。  論文通訊作

    全球變暖削弱植物“吸碳”能力

      植物可以通過光合作用吸收并轉化二氧化碳。不過,一項國際研究顯示,隨著全球變暖的加劇,植物的這種“吸碳”能力受到削弱,人類應對氣候變化行動應該考慮到這一因素。  植物吸收二氧化碳之后,除了將部分二氧化碳和水合成有機化合物并釋放出氧氣,還有一部分二氧化碳會通過植物的“呼吸”再次排出到大氣中。  澳大

    光合作用的碳同化

    CO2同化(CO2assimilation)是光合作用過程中的一個重要方面。碳同化是通過和所推動的一系列CO2同化過程,把CO2變成糖類等有機物質。高等植物固定CO2的生化途徑有3條:卡爾文循環、C4途徑和景天酸代謝途徑。其中以卡爾文循環為最基本的途徑,同時,也只有這條途徑才具備合成淀粉等產物的能力

    碳四植物光合作用特點

    在C4植物葉肉細胞的葉綠體中,在有關酶的催化作用下,一個CO2被一個叫做磷酸烯醇式丙酮酸的C3(英文縮寫符號是PEP)固定,形成一個C4。C4進入維管束鞘細胞的葉綠體中,釋放出一個CO2,并且形成一個含有三個碳原子的有機酸——丙酮。這種能夠固定CO2的酶,叫做磷酸烯醇式丙酮酸羧化酶,簡稱PEP羧化酶

    藻類水下光合作用的蛋白結構和功能破解了

      光合作用為生物的生存提供了能量和氧氣,為利用不同環境下的光能,光合生物進化出了不同的色素分子和色素結合蛋白。硅藻是一種豐富和重要的水生光合真核生物,占地球總原初生產力的20%。硅藻含有巖藻黃素/葉綠素結合膜蛋白(FCPs),該色素蛋白使硅藻具有獨特的光捕獲和光保護及快速適應光強度變化的能力。  

    直播|科學公開課:沐光而生-藻類與光合作用

    原文地址:http://news.sciencenet.cn/htmlnews/2023/8/506315.shtm 直播時間:2023年8月10日(周四)20:00 直播平臺: 科學網APP (科學網微博直播間鏈接) 科學網微博 科學網視頻號

    海洋所鹽田藻類生物碳匯研究取得進展

    近日,Journal of Advanced Research發表了中國科學院海洋研究所藻類生理過程與精準分子育種團隊完成的關于鹽田藻類碳沉積的成果。該研究聚焦嗜鹽藻類與嗜鹽菌協同促進高鹽生態環境中碳酸鹽的沉積現象,揭示了其背后的碳匯生物學過程和機制,為發展近海鹽田、內陸鹽湖等水生環境中的碳匯提供了

    碳四植物光合作用的特點

    在C4植物葉肉細胞的葉綠體中,在有關酶的催化作用下,一個CO2被一個叫做磷酸烯醇式丙酮酸的C3(英文縮寫符號是PEP)固定,形成一個C4。C4進入維管束鞘細胞的葉綠體中,釋放出一個CO2,并且形成一個含有三個碳原子的有機酸——丙酮。這種能夠固定CO2的酶,叫做磷酸烯醇式丙酮酸羧化酶,簡稱PEP羧化酶

    碳四植物和碳三植物哪個光合作用的效率更高?

    一般植物中,二氧化碳同化時固定的第一個產物是具有3個碳原子的磷酸甘油酸,采用這種途徑的植物稱碳3植物,,如大豆、棉花、小麥和稻等。而有些植物中,二氧化碳固定的第一個產物是具有4個碳原子的雙羧酸,采用這種途徑的植物稱碳4植物,,如玉米、高粱和甘蔗等。二氧化碳首先在葉肉細胞內被固定在四碳雙羧酸中,然后被

    鐵氧化物促進的有機碳埋藏能增加大氣氧含量

    除了光合作用,還有哪些因素會影響大氣中的氧氣含量?23日,記者從中國科學院地質與地球物理研究所獲悉,該所研究人員發現,鐵氧化物促進的有機碳埋藏是影響大氣氧含量的一個獨立因素,可以引起大氣氧含量發生數量級的變化。相關研究成果在線發表于《自然·地球科學》雜志。藻類和植物的光合作用是大氣中氧氣的主要來源。

    德借助人工光合作用高效固碳

      應對氣候變化措施中,減少空氣中溫室氣體含量是重要一項。德國研究人員日前報告說,他們在實驗室中研究出一種人工光合作用方法,可以更快地固定空氣中的二氧化碳。   植物光合作用中的卡爾文循環是一種重要的生物固碳形式,大氣中的二氧化碳進入卡爾文循環轉化成糖,這是減少大氣中二氧化碳含量最便宜且副作用最少的

    關于光合作用的碳同化的基本內容

      CO2同化(CO2assimilation)是光合作用過程中的一個重要方面。碳同化是通過和所推動的一系列CO2同化過程,把CO2變成糖類等有機物質。高等植物固定CO2的生化途徑有3條:卡爾文循環、C4途徑和景天酸代謝途徑。其中以卡爾文循環為最基本的途徑,同時,也只有這條途徑才具備合成淀粉等產物的

    葉綠素是什么

    葉綠素是一類與光合作用(photosynthesis)有關的最重要的色素。光合作用是通過合成一些有機化合物將光能轉變為化學能的過程。葉綠素實際上存在于所有能營造光合作用的生物體,包括綠色植物、原核的藍綠藻(藍菌)和真核的藻類。葉綠素從光中吸收能量,然后能量被用來將二氧化碳轉變為碳水化合物。中文名稱:

    關于光合作用的相關介紹

      光合作用,通常是指綠色植物(包括藻類)吸收光能,把二氧化碳和水合成富能有機物,同時釋放氧氣的過程。 其主要包括光反應、暗反應兩個階段, 涉及光吸收、電子傳遞、光合磷酸化、碳同化等重要反應步驟,對實現自然界的能量轉換、維持大氣的碳-氧平衡具有重要意義。  綠色植物利用太陽的光能,同化二氧化碳(CO

    英高校將模擬光合作用制造“無碳”新能源

      英國多所知名高校日前啟動了一項新研究計劃,通過模擬植物光合作用的原理,將太陽光轉化為可利用的氫能源。  該項目首席研究員、英國東英吉利大學科學家茹萊亞?比特表示,研究人員將利用合成生物技術,把微型太陽能板與微生物綁定,建立起人工模擬的光合系統,從而將吸收的太陽光轉化為氫和氧。  比特說

    金屬有機框架材料可提高光合作用固碳效率

    原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508303.shtm在自然光合作用中,植物利用太陽光、水、二氧化碳合成生物質。但是,植物的光合作用效率主要受到光照質量和二氧化碳捕集與傳輸方面因素的限制,制約了光合作用合成生物質的效率。近日,中國科學院大

    金屬有機框架材料可提高光合作用固碳效率

      在自然光合作用中,植物利用太陽光、水、二氧化碳合成生物質。但是,植物的光合作用效率主要受到光照質量和二氧化碳捕集與傳輸方面因素的限制,制約了光合作用合成生物質的效率。近日,中國科學院大連化學物理研究所李燦院士、副研究員王旺銀等在提高微藻光合作用固碳方面取得了新進展。團隊發現利用金屬有機框架材料(

    Nature:藻類基因組解讀葉綠體秘史

      我們初學生物時接觸得最早的就是光合作用,光合作用利用二氧化碳、水和太陽能合成有機物。世界上最重要的光合作用真核生物(植物)多半并不是自己演化出光合作用能力的,它們的葉綠體是從其他生物中“拿來”的。   這些葉綠體來源于真核宿主吞食的光合細菌,這一過程被稱為初級內共生。隨后,紅藻和綠藻中的葉綠體

    浙農林大學生研發“吸碳”性能超強的新型吸附材料

    原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500542.shtm

    藻類計數儀簡介

      藻類智能鑒定計數儀 是智能化的藻類計數分析儀,能快速實現藻類清晰成像、按形態自動分類計數藻類、累計總數和排序優勢藻,以取代人工鏡檢計數,提高工作效率和準確性。具備國內多種藻類(藍藻、綠藻、硅藻、裸藻、黃藻、褐藻、甲藻、隠藻、金藻、紅藻、輪藻)、數千種藻類鑒別比對圖庫,能通過形態學、關鍵詞、分類學

    光合作用:撐起綠色能源一片天

    氧化碳排放、油價飆升、能源危機已成為當前熱門的話題。 實際上,地球上的能量巨大。太陽每秒鐘到達地面的能量達80萬千瓦,如果將太陽光照射地球表面1個小時產生的所有能量聚積起來,就足以滿足人類整整一年的能源需求。 而光合作用是地球上最為有效的固定太陽光能的過程,如果人類可以像植物一樣利用光合作用,直

    單細胞生物固碳、固氮雙功效機制破譯

    藍藻(Blue green algae)是一種重要的固碳菌,由于具有將氮氣轉化為可利用的營養,因此能夠在營養貧乏的水域中進行光合作用。詳細內容刊登于最新一期《The International Society for Microbial Ecology (ISME) Journal》雜志。 由美國

    光合作用的概念

    光合作用,通常是指綠色植物(包括藻類)吸收光能,把二氧化碳和水合成富能有機物,同時釋放氧氣的過程。其主要包括光反應、暗反應兩個階段,涉及光吸收、電子傳遞、光合磷酸化、碳同化等重要反應步驟,對實現自然界的能量轉換、維持大氣的碳-氧平衡具有重要意義。

    光合作用的定義

    光合作用,通常是指綠色植物(包括藻類)吸收光能,把二氧化碳和水合成富能有機物,同時釋放氧氣的過程。?其主要包括光反應、暗反應兩個階段,涉及光吸收、電子傳遞、光合磷酸化、碳同化等重要反應步驟,對實現自然界的能量轉換、維持大氣的碳-氧平衡具有重要意義。

    光合作用的作用及反應步驟

    光合作用,通常是指綠色植物(包括藻類)吸收光能,把二氧化碳和水合成富能有機物,同時釋放氧氣的過程。其主要包括光反應、暗反應兩個階段,涉及光吸收、電子傳遞、光合磷酸化、碳同化等重要反應步驟,對實現自然界的能量轉換、維持大氣的碳-氧平衡具有重要意義。

    光合作用的原理

    光合作用,通常是指綠色植物(包括藻類)吸收光能,把二氧化碳和水合成富能有機物,同時釋放氧氣的過程。?其主要包括光反應、暗反應兩個階段, 涉及光吸收、電子傳遞、光合磷酸化、碳同化等重要反應步驟,對實現自然界的能量轉換、維持大氣的碳-氧平衡具有重要意義。

    三重共生體系研究取得進展

      在現有的生態系統中,異養生物和光合藻類之間的共生關系廣泛且具有重要的生態意義。許多真核生物因此成為混合營養生物,即它們通過從藻類中獲取藻類內共生菌或葉綠體,將捕食和光合作用結合起來。光合自養內共生體通常將光合產物(如糖、有機酸和氧氣)釋放到宿主體內,而宿主則提供營養豐富的環境(如氮和礦物質)以及

    藻類植物的采集和培養實驗_藻類植物采集方法

    實驗材料藻類植物儀器、耗材工具袋25 號浮游生物網塑料瓶(或試劑瓶) (100mL)廣口瓶 (250mL500mL)大鑷子采集刀吸管鉛筆標簽紙紙袋(或信封)等實驗步驟1 淡水藻類的采集方法(1) 浮游藻類在較大較深水面,可用浮游生物網在水中作"∞"字形來回慢慢拖動采集。采集后將網垂直提出水面,打開網

    藻類植物的采集和培養實驗_藻類植物分離培養

    實驗材料藻類植物儀器、耗材工具袋25 號浮游生物網塑料瓶(或試劑瓶) (100mL)廣口瓶 (250mL500mL)大鑷子采集刀吸管鉛筆標簽紙紙袋(或信封)等實驗步驟常見藻類的分離和培養(1)衣藻的分離和培養①藻種分離把野外采集來的衣藻水樣,經顯微鏡鏡檢后,倒入廣口瓶內,置于窗臺向陽處,由于衣藻有趨

  • <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>
  • 调性视频