蛋白質的直接定量(UV法)
蛋白質的直接定量(UV法) 分光光度計原理說明的這種方法是在280nm波長,直接測試蛋白。選擇Warburg公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換為樣品濃度。蛋白質測定過程非常簡單,先測試空白液,然后直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除320nm的“背景”信息,設定此功能“開”。與測試核酸類似,要求A280的吸光值至少大于0.1A,最佳的線性范圍在1.0-1.5之間。實驗中選擇Warburg公式顯示樣品濃度時,發現讀數“漂移”。這是一個正常的現象。事實上,只要觀察A280的吸光值的變化范圍不超過1%,表明結果非常穩定。漂移的原因是因為Warburg公式吸光值換算成濃度,乘以一定的系數,只要吸光值有少許改變,濃度就會被放大,從而顯得結果很不穩定。蛋白質直接定量方法,適合測試較純凈、成分相對單一的蛋白質。紫外直接定量法相對于比色法來說,速度......閱讀全文
蛋白質的直接定量(UV法)
蛋白質的直接定量(UV法)??? 分光光度計原理說明的這種方法是在280nm波長,直接測試蛋白。選擇Warburg公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換為樣品濃度。蛋白質測定過程非常簡單,先測試空白液,然后直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除
蛋白質的直接定量(UV法)簡述
這種方法是在280 nm波長,直接測試蛋白。選擇 Warburg公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換為樣品濃度。蛋白質測定過程非常簡單,先測試空白液,然后直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除 320 nm的“背景”信息,設定此功能“開”。與
分光光度計用于蛋白質的直接定量(UV法)應用
這種方法是在280nm波長,直接測試蛋白。選擇Warburg 公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換為樣品濃度。蛋白質測定過程非常簡單,先測試空白液,然后直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除320nm 的“背景”信息,設定此功能“開”。與測試核酸
分光光度計應用蛋白質的直接定量(UV法)介紹
這種方法是在280nm波長,直接測試蛋白。選擇Warburg 公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換為樣品濃度。蛋白質測定過程非常簡單,先測試空白液,然后直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除320nm 的“背景”信息,設定此功能“開”。與測試核酸
UV法蛋白質定量分析簡述
這種方法是在280 nm波長,直接測試蛋白。選擇 Warburg公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換為樣品濃度。 蛋白質測定過程非常簡單,先測試空白液,然后直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除 320 nm的“背景”信息,設定此功能“開”
蛋白質的定量測定——紫外(UV)吸收測定法
實驗原理蛋白質分子中所含酪氨酸和色氨酸殘基的苯環含有共軛雙鍵,使蛋白質在280nm波長處有最大吸收值。在一定濃度范圍內,蛋白質溶液的光吸收值(A280)與其含量成正比關系,可用作定量測定。紫外線吸收法測定蛋白質含量的優點是迅速,簡便,不消耗樣品,低濃度鹽類不干擾測定。因此,廣泛應用在柱層析分離中蛋白
蛋白質定量/蛋白質含量的測定(LOWRY法)
實驗概要運用LOWRY法測定蛋白質的含量。實驗原理Lowry法是雙縮脲法和福林酚法的結合與發展,其原理是:蛋白質溶液用堿性銅溶液處理,形成銅-蛋白質的絡合鹽,再加入酚試劑后,除使肽鏈中酪氨酸、色氨酸和半胱氨酸等顯色外,還使雙縮脲法中肽鍵、堿性銅的顯色效果更強烈。因此,Lowry法的顯色效果比單獨使用
蛋白質定量檢測方法——BCA法
BCA(Bicinchoninc acid procedure,4,4’-二羧-2,2’-二喹啉)法與Lowry法相似,主要差別在堿性溶液中,蛋白質使Cu2+轉變Cu+后,進一步以BCA 取代Folin試劑與Cu+結合產生深紫色,在波長562 nm有強的吸收。 它的優點在于堿性溶液中B
蛋白質定量實驗_胺衍生法
試劑、試劑盒OPA 儲存液實驗步驟1.于分析前至少 30 min 將 15uL 2-巰基乙醇加人到 5 mL OPA 儲存液中, 這一試劑可穩定維持一天。所有熒光樣品和相關反應在所有時間內都需要避光。2.蛋白質標準品 (0.2~10 ug/mL) 和未知濃度的待測樣品在分析前需要調節 pH 至 8.
蛋白質定量檢測方法——酚試劑法
取6支試管分別標號,前5支試管分別加入不同濃度的標準蛋白溶液,最后一支試管加待測蛋白質溶液,不加標準蛋白溶液,在室溫下放置30分鐘,以未加蛋白質溶液的第一支試管作為空白對照,于650nm波長處測定各管中溶液的吸光度值。優點:靈敏度高,對水溶性蛋白質含量的測定很有效。缺點:①費時,要精確控制操作時間;
蛋白質定量檢測方法——紫外吸收法
大多數蛋白質在280nm波長處有特征的最大吸收,這是由于蛋白質中有酪氨酸,色氨酸和苯丙氨酸存在,可用于測定0.1~0.5mg/mL含量的蛋白質溶液。取9支試管分別標號,前8支試管分別加入不同濃度的標準蛋白溶液,1號試管不加標準蛋白溶液,最后一支試管加待測蛋白質溶液,而不加標準蛋白溶液,每支試管液體總
蛋白質含量的定量測定——雙縮脲法(Biuret法)
實驗原理具有兩個或兩個以上肽鍵的化合物皆有雙縮脲反應。在堿性溶液中雙縮脲與銅離子結合形成復雜的紫好色復合物。而蛋白質及多肽的肽鍵與雙縮脲的結構類似,也能與Cu2+形成紫紅色絡合物,其最大光吸收在540nm處。其顏色深淺與蛋白質濃度成正比,而與蛋白質的分子量及氨基酸的組成無關,該法測定蛋白質的濃度范圍
蛋白質的定量測定——福林酚法(Folin—酚試劑法)
實驗原理 Folin—酚試劑法最早是由Lowry確定的測定蛋白質濃度的基本方法。以后在生物化學領域得到廣泛的應用。此法的顯色原理與雙縮脲方法是相同的,只是加入了第二種試劑,即Folin—酚試劑,以增加顯色量,從而提高了檢測蛋白質的靈敏度。這個方法的優點是靈敏度高,比雙縮脲法靈敏得多,缺點是費時較
COD測量中的UV法
UV法在線COD監測儀可以實現快速、準確、經濟的COD在線監控。儀器的基本測量原理是基于污水中的有機物對紫外線的吸收。含有共軛雙鍵或多環芳烴的有機物溶解在水中時,對紫外光有吸收作用。因此,通過測量這些有機物對254nm紫外光的吸收程度,我們就可以評估水體被這些有機物污染的程度。應用領域包括飲用水、
COD測量中的UV法
?? UV法在線COD監測儀可以實現快速、準確、經濟的COD在線監控。儀器的基本測量原理是基于污水中的有機物對紫外線的吸收。含有共軛雙鍵或多環芳烴的有機物溶解在水中時,對紫外光有吸收作用。因此,通過測量這些有機物對254nm紫外光的吸收程度,我們就可以評估水體被這些有機物污染的程度。應用領域包括飲用
蛋白質定量/蛋白質含量的測定(考馬斯亮藍法)
實驗概要運用考馬斯亮藍法測定蛋白質的含量。實驗原理考馬斯亮藍G-250測定蛋白質含量屬于染料結合法的一種。考馬斯亮藍G-250在游離態下呈紅色,當它與蛋白質的疏水區結合后變為青色,前者最大光吸收在465nm,后者在595nm。在一定蛋白質濃度范圍內(0~100μg/ml),蛋白質-色素結合物在595
使用分光光度計蛋白質的直接定量的過程介紹
這種方法是在280nm波長,直接測試蛋白。選擇Warburg 公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換為樣品濃度。蛋白質測定過程非常簡單,先測試空白液,然后直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除320nm 的“背景”信息,設定此功能“開”。與測試核酸
蛋白質定量檢測方法——雙縮脲法
雙縮脲法是一個用于鑒定蛋白質的分析方法。雙縮脲試劑是一個堿性的含銅試液,呈藍色,由1%氫氧化鉀、幾滴1%硫酸銅和酒石酸鉀鈉配制。當底物中含有肽鍵時(多肽),試液中的銅與多肽配位,配合物呈紫色。可通過比色法分析濃度,在紫外可見光譜中的波長為540nm。鑒定反應的靈敏度為5-160mg/ml。鑒定反應蛋
超微量分光光度計的蛋白質直接定量敘述
這種方法是在280nm波長,直接測試蛋白。選擇Warburg 公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換為樣品濃度。蛋白質測定過程非常簡單,先測試空白液,然后直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除320nm 的“背景”信息,設定此功能“開”。與
直接-ELISA法
實驗概要ELISA的基礎是抗原或抗體的固相化及抗原或抗體的酶標記。結合在固相載體表面的抗原或抗體仍保持其免疫學活性,酶標記的抗原或抗體既保留其免疫學活性,又保留酶的活性。在測定時,受檢標本(測定其中的抗體或抗原)與固相載體表面的抗原或抗體起反應。用洗滌的方法使固相載體上形成的抗原抗體復合物與液體中的
直接ELISA法
實驗概要ELISA的基礎是抗原或抗體的固相化及抗原或抗體的酶標記。結合在固相載體表面的抗原或抗體仍保持其免疫學活性,酶標記的抗原或抗體既保留其免疫學活性,又保留酶的活性。在測定時,受檢標本(測定其中的抗體或抗原)與固相載體表面的抗原或抗體起反應。用洗滌的方法使固相載體上形成的抗原抗體復合物與液體中的
蛋白質定量實驗_堿性銅還原分析法
試劑、試劑盒Folin-Ciocalteu 試劑硫酸銅試劑堿性銅試劑實驗步驟堿性銅還原分析法 (Lowry 法)(Lowryetal.,1951) 和其他能夠增強檢測性能的方法都是基于一個包括兩個步驟的過程。首先,雙縮脲反應涉及蛋白質在堿性溶液環境中將銅還原(由Cu2+到?Cu+); 隨后是反應增強
蛋白質定量檢測方法——凱氏定氮法
凱氏定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然后在堿性條件下將銨鹽轉化為氨,隨水蒸氣蒸餾出來并為過量的硼酸液吸收,再以標準鹽酸滴定,就可計算出樣品中的氮量。由于蛋白質含氮量比較恒定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定
蛋白質定量檢測方法——考馬斯亮藍法
考馬斯亮藍顯色法的基本原理是根據蛋白質可與考馬斯亮藍G-250 定量結合。當考馬斯亮藍 G-250 與蛋白質結合后,其對可見光的最大吸收峰從 465nm 變為 595nm。在考馬斯亮藍 G-250 過量且濃度恒定的情況下,當溶液中的蛋白質濃度不同時,就會有不同量的考馬斯亮藍 G-250 從吸收峰為
超微量分光光度計的蛋白質直接定量功能介紹
超微量分光光度計的蛋白質直接定量是在280nm波長,直接測試蛋白。選擇Warburg 公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換為樣品濃度。蛋白質測定過程非常簡單,先測試空白液,然后直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除320nm 的“背景”信息,
蛋白質定量
Quantitative Determination of Peptides by Sulfhydryl (-SH) Groups?New?(Contributed by David Van Horn, Dept. of Chemistry, UC Berkeley Greg Bulaj, Dept
蛋白質定量實驗_考馬斯亮藍蛋白質濃度分析法
實驗方法原理蛋白質分子中的芳香族氨基酸酪氨酸、苯丙氨酸和色氨酸殘基,其化學結構中的共軛雙鍵,具有吸收紫外光的特性,吸收高峰在280 nm處,蛋白質溶液的吸光度(A280)與蛋白質含量成正比關系,可作為樣品中蛋白質定量測定。該方法簡便、靈敏、快速,且樣品用量少且可回收,低濃度的鹽類也不干擾測定,但測定
RRLCUV/MS中藥質控法
本文介紹了將高分離度快速液相色譜法紫外-可見檢測器和四極桿質譜聯用,分析各種中藥(TCM)及中藥制劑的方法,對不同中藥用UV和MS檢測所得到的色譜圖進行了比較,將UV和MS圖譜結合進行目標化合物的鑒定,該方法較傳統控制單一組分的方法更為可靠。 我國擁有長期使用中藥和中藥制劑的歷史,但由于缺
蛋白質合成的直接模板介紹
1、翻譯模板 protein biosynthesis 不同mRNA序列的分子大小和堿基排列順序各不相同,但都具有5ˊ-端非翻譯區、開放閱讀框架區、和3ˊ-端非翻譯區;真核生物的mRNA的5ˊ-端還有帽子結構、3ˊ-端有長度不一的多聚腺苷酸(polyA)尾。帽子結構能與帽子結合,在翻譯時參與
蛋白質定量實驗
考馬斯亮藍蛋白質濃度分析法 堿性銅還原分析法 胺衍生法 ? ? ? ? ? ? 實驗方法原理 蛋白質分子中的芳香族氨基酸酪氨酸、苯丙氨酸和色氨酸殘基,其化學結構中