• <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>

  • 祝賀!人工智能首次成功解析蛋白質結構

    生物學界最大的挑戰之一——蛋白質三維結構解析如今有望被破解。谷歌旗下人工智能公司DeepMind開發的深度學習程序AlphaFold能夠精確預測其三維形狀。長久以來,人們需要借助實驗確定完整的蛋白質結構,這些方法往往需要數月甚至數年時間。而現在,人工智能也有能力給出精確預測的計算方法,可能只要幾天甚至半個小時。11月30日,在蛋白質預測結構挑戰賽CASP上,AlphaFold程序在百余支隊伍中脫穎而出。將深度學習與張力控制算法結合,并應用于結構和遺傳數據,該深度學習網絡利用目前已知的17萬種解析完畢的蛋白質進行了訓練。DeepMind有關研發團隊表示,還將繼續對AlphaFold展開訓練,以便更好地解析更復雜的蛋白質結構。圖中藍色為計算機預測的蛋白質結構,綠色為實驗驗證結果,二者相似度非常高。圖片來源:DeepMind......閱讀全文

    祝賀!人工智能首次成功解析蛋白質結構

      生物學界最大的挑戰之一——蛋白質三維結構解析如今有望被破解。谷歌旗下人工智能公司DeepMind開發的深度學習程序AlphaFold能夠精確預測其三維形狀。長久以來,人們需要借助實驗確定完整的蛋白質結構,這些方法往往需要數月甚至數年時間。而現在,人工智能也有能力給出精確預測的計算方法,可能只要幾

    人工智能算法有助于快速分析蛋白質折疊結構

    近日,英國《自然》雜志報道,美國哈佛大學醫學院生物學家AlQuraishi開發出新型人工智能算法,能夠快速分析預測蛋白質三維結構,大大提高蛋白質三維結構預測的效率,將預測時間從若干小時或幾天縮短至幾毫秒。  報道稱,蛋白質三維結構與蛋白質功能密切相關,當前生物學界一大挑戰在于如何基于氨基酸序列預測蛋

    科學家將人工智能技術成功用于蛋白質復合物結構預測

      蛋白質作為構成人體組織器官的支架和主要物質,在人體生命活動中起著重要作用。蛋白質的相互作用能產生許多效應,如形成特異底物作用通道、生成新的結合位點、失活、作用底物專一性和動力學變化等,細胞的代謝、信號傳導以及基因表達調控都與錯綜復雜的蛋白質相互作用網絡密切相關。  蛋白質的三維空間結構對蛋白質相

    科學家將人工智能技術成功用于蛋白質復合物結構預測

      蛋白質作為構成人體組織器官的支架和主要物質,在人體生命活動中起著重要作用。蛋白質的相互作用能產生許多效應,如形成特異底物作用通道、生成新的結合位點、失活、作用底物專一性和動力學變化等,細胞的代謝、信號傳導以及基因表達調控都與錯綜復雜的蛋白質相互作用網絡密切相關。  蛋白質的三維空間結構對蛋白質相

    人工智能氣候室結構與特點分析

    人工智能氣候室是由6面保溫墻體制成,室內分為冷室與熱室。被測試的設備為家用電加熱器,放置在熱室內,測試期間要求熱室恒溫在(23±0.5)℃。冷室模擬室外環境溫度,溫度設定根據測試電加熱器的功率確定。冷室內的制冷量要與熱室內被測電加熱器的散熱量保持平衡,從而保證熱室溫度的恒定。冷熱室之間的能量交換主要

    蛋白質根據蛋白質結構進行分類

    纖維蛋白(fibrous protein):一類主要的不溶于水的蛋白質,通常都含有呈現相同二級結構的多肽鏈許多纖維蛋白結合緊密,并為單個細胞或整個生物體提供機械強度,起著保護或結構上的作用。球蛋白(globular protein):緊湊的,近似球形的,含有折疊緊密的多肽鏈的一類蛋白質,許多都溶于水

    關于蛋白質結構的結構種類概述

      蛋白質分子是由氨基酸首尾相連縮合而成的共價多肽鏈,但是天然蛋白質分子并不是走向隨機的松散多肽鏈。每一種天然蛋白質都有自己特有的空間結構或稱三維結構,這種三維結構通常被稱為蛋白質的構象,即蛋白質的結構。  蛋白質的分子結構可劃分為四級,以描述其不同的方面:  一級結構:組成蛋白質多肽鏈的線性氨基酸

    關于蛋白質結構的結構測定介紹

      專門存儲蛋白質和核酸分子結構的蛋白質數據庫中,接近90%的蛋白質結構是用X射線晶體學的方法測定的。X射線晶體學可以通過測定蛋白質分子在晶體中電子密度的空間分布,在一定分辨率下解析蛋白質中所有原子的三維坐標。大約9%的已知蛋白結構是通過核磁共振技術來測定的。該技術還可用于測定蛋白質的二級結構。除了

    關于蛋白質結構的結構預測介紹

      測定蛋白質序列比測定蛋白質結構容易得多,而蛋白質結構可以給出比序列多得多的關于其功能機制的信息。因此,許多方法被用于從序列預測結構。  一、二級結構預測  二、三級結構預測  同源建模:需要有同源的蛋白三級結構為基礎進行預測。  Threading法。“從頭開始”(Ab initio):只需要蛋

    蛋白質整體的結構

     蛋白質是以氨基酸為基本單位構成的生物大分子。蛋白質分子上氨基酸的序列和由此形成的立體結構構成了蛋白質結構的多樣性。蛋白質具有一級、二級、三級、四級結構,蛋白質分子的結構決定了它的功能。     一級結構:蛋白質多肽鏈中氨基酸的排列順序,以及二硫鍵的位置。     二級結構:蛋白質分子局區域內,多肽

    蛋白質立體結構原則

    1.由于C=O雙鍵中的π電子云與N原子上的未共用電子對發生“電子共振”,使肽鍵具有部 分雙鍵的性質,不能自由旋轉。 ? 2.與肽鍵相連的六個原子構成剛性平面結構,稱為肽單元或肽鍵平面。但由于α-碳原子與其他原子之間均形成單鍵,因此兩相鄰的肽鍵平面可以作相對旋轉。此單鍵的旋

    蛋白質的基本結構

    蛋白質是以氨基酸為基本單位構成的生物高分子。蛋白質分子上氨基酸的序列和由此形成的立體結構構成了蛋白質結構的多樣性。蛋白質具有一級、二級、三級、四級結構,蛋白質分子的結構決定了它的功能。一級結構(primary structure):氨基酸殘基在蛋白質肽鏈中的排列順序稱為蛋白質的一級結構,每種蛋白質都

    研究利用人工智能預測蛋白質“光學指紋”

      蛋白質是生命的基石,生物的功能依賴于既穩定而又靈活可變的蛋白質結構。蛋白質的光譜響應信號,尤其是紫外光譜,可以稱之為蛋白質骨架的“指紋”。這個“光學指紋”,經過理論模擬的解讀,可以揭示出精確的蛋白質結構,為生命科學和醫學診斷提供極其重要的信息。  然而,蛋白質的結構極其復雜多變,需要做大量的高精

    蛋白質二維結構的結構特點

    二維結構是指原子或離子集團中的原子或離子具有在空間沿二維方向的正、反向延伸作有規律排布的結構。

    蛋白質三級結構的結構特點

    三級結構是由一個已經具有了某些a-螺旋和/或b折疊區的多肽鏈折疊成一個緊密包裹的、幾乎成球形的空間結構,或稱為天然構象。三級結構的一個重要特點是在一級結構上離得遠的氨基酸殘基在三級結構中可以靠的很近,它們的側鏈可以發生相互作用。二級結構是靠骨架中的酰胺和羰基之間形成的氫鍵維持穩定的,三級結構主要是靠

    人工智能成功預測蛋白質的相互作用

      美國科學家主導的國際科研團隊在最新一期《科學》雜志撰文指出,他們利用人工智能和進化分析,繪制出了真核生物的蛋白質之間相互作用的3D模型,首次確定了100多個可能的蛋白質復合物,并為700多個蛋白質復合物提供了結構模型,深入研究蛋白質相互作用有望催生新的藥物。  研究負責人之一、美國西南大學人類發

    人工智能設計的蛋白質能被“武器化”嗎?

    原文地址:http://news.sciencenet.cn/htmlnews/2024/3/518933.shtm人工智能設計的蛋白質能被用作生物武器嗎?為了避免這種可能性,以及避免煩瑣的政府監管,3月8日,美國研究人員發起了一項倡議,呼吁安全、合乎道德地使用蛋白質設計。美國西雅圖華盛頓大學計算生

    《科學》:人工智能幾秒便可設計“原創”新蛋白質

    今年6月,韓國監管機構批準了首款由人類設計的新型蛋白質制成的新冠肺炎疫苗。該疫苗基于一種球形蛋白質“納米顆粒”,由研究人員在10年前通過勞動密集型試錯攻關研制而成。現在,隨著人工智能(AI)的巨大進步,美國西雅圖華盛頓大學(UW)生物化學家David Baker領導的一個團隊,只需幾秒鐘——而不是幾

    蛋白質結構的相關介紹

      蛋白質結構是指蛋白質分子的空間結構。作為一類重要的生物大分子,蛋白質主要由碳、氫、氧、氮、硫等化學元素組成。所有蛋白質都是由20種不同的L型α氨基酸連接形成的多聚體,在形成蛋白質后,這些氨基酸又被稱為殘基。蛋白質和多肽之間的界限并不是很清晰,有人基于發揮功能性作用的結構域所需的殘基數認為,若殘基

    蛋白質折疊的主要結構

    蛋白質的主要結構及其線性氨基酸序列決定了其天然構象。特定氨基酸殘基及其在多肽鏈中的位置是決定因素,蛋白質的某些部分緊密折疊在一起并形成其三維構象。氨基酸組成不如序列重要。然而,折疊的基本事實仍然是,每種蛋白質的氨基酸序列都包含指定天然結構和達到該狀態的途徑的信息。這并不是說幾乎相同的氨基酸序列總是相

    噬菌體蛋白質的結構

    無尾部結構的二十面體:這種噬菌體為一個二十面體,外表由規律排列的蛋白亞單位——衣殼組成,核酸則被包裹在內部。有尾部結構的二十面體:這種噬菌體除了一個二十面體的頭部外,還有由一個中空的針狀結構及外鞘組成的尾部,以及尾絲和尾針組成的基部。線狀體:這種噬菌體呈線狀,沒有明顯的頭部結構,而是由殼粒組成的盤旋

    蛋白質的結構和功能

    蛋白質是細胞組分中含量最豐富、功能最多的高分子物質。酶、抗體、多肽激素、轉運蛋白、收縮蛋白以及細胞的骨架結構均為蛋白質。幾乎在所有的生物過程中起著關鍵作用。蛋白質的基本組成單位是氨基酸。構成天然蛋白質的氨基酸有二十種,分為非極性、疏水性氨基酸;極性、中性氨基酸;酸性氨基酸和堿性氨基酸。氨基酸借助肽鍵

    蛋白質的結構與功能

    蛋白質分子中關鍵活性部位氨基酸殘基的改變,會影響其生理功能,甚至造成分子病(moleculardisease)。例如鐮狀細胞貧血,就是由于血紅蛋白分子中兩個β亞基第6位正常的谷氨酸變異成了纈氨酸,從酸性氨基酸換成了中性支鏈氨基酸,降低了血紅蛋白在紅細胞中的溶解度,使它在紅細胞中隨血流至氧分壓低的外周

    蛋白質立體結構的形成

    在對蛋白質立體結構有所了解的基礎上,蛋白質化學家很自然地希望闡明蛋白質立體結構是如何形成的,即肽鏈是如何折疊的。從Anfinsen經典的核糖核酸酶的還原和重氧化實驗,得出蛋白質肽鏈折疊的基本原則:蛋白質的氨基酸序列決定了蛋白質的立體結構,即肽鏈的折疊方式。肽鏈折疊的本質,可以簡單地理解為將肽鏈中絕大

    簡述蛋白質結構的作用

      1、蛋白質結構的作用—構成生物體內基本物質,為生長及維持生命所必需;  2、蛋白質結構的作用—部分蛋白質可作為生物催化劑,即酶和激素;  3、蛋白質結構的作用—生物的免疫作用所必需的物資;  4、蛋白質結構的作用—有些蛋白質會導致食物過敏。

    蛋白質按結構種類分類

    纖維蛋白(fibrous protein):一類主要的不溶于水的蛋白質,通常都含有呈現相同二級結構的多肽鏈許多纖維蛋白結合緊密,并為單個細胞或整個生物體提供機械強度,起著保護或結構上的作用。球蛋白(globular protein):緊湊的,近似球形的,含有折疊緊密的多肽鏈的一類蛋白質,許多都溶于水

    蛋白質的整體結構介紹

    蛋白質是以氨基酸為基本單位構成的生物高分子。蛋白質分子上氨基酸的序列和由此形成的立體結構構成了蛋白質結構的多樣性。蛋白質具有一級、二級、三級、四級結構,蛋白質分子的結構決定了它的功能。蛋白質分子的化學鍵一級結構(primary structure):氨基酸殘基在蛋白質肽鏈中的排列順序稱為蛋白質的一級

    蛋白質的結構及蛋白質的功能(二)

    ?? (二)蛋白質空間橡象與功能活性的關系  蛋白質多種多樣的功能與各種蛋白質特定的空間構象密切相關,蛋白質的空間構象是其功能活性的基礎,構象發生變化,其功能活性也隨之改變。蛋白質變性時,由于其空間構象被破壞,故引起功能活性喪失,變性蛋白質在復性后,構象復原,活性即能恢復。  在生物體內,當某種物質

    蛋白質的結構及蛋白質的功能(一)

    ?? 蛋白質為生物高分子物質之一,具有三維空間結構,因而執行復雜的生物學功能。蛋白質結構與功能之間的關系非常密切。在研究中,一般將蛋白質分子的結構分為一級結構與空間結構兩類。  一、蛋白質的一級結構  蛋白質的一級結構(primary structure)就是蛋白質多肽鏈中氨基酸殘基的排列順序(

    關于蛋白質結構的一級結構介紹

      蛋白質的一級結構(primary structure)就是蛋白質多肽鏈中氨基酸殘基的排列順序(sequence),也是蛋白質最基本的結構。它是由基因上遺傳密碼的排列順序所決定的。各種氨基酸按遺傳密碼的順序,通過肽鍵連接起來,成為多肽鏈,故肽鍵是蛋白質結構中的主鍵。  迄今已有約一千種左右蛋白質的

  • <table id="4yyaw"><kbd id="4yyaw"></kbd></table>
  • <td id="4yyaw"></td>
  • 调性视频