液相法氮化鎵晶體生長研究
GaN是一種寬帶隙半導體材料,具有高擊穿電壓、高的飽和電子漂移速度、優異的結構穩定性和機械性能,在高頻、高功率和高溫等應用領域具有獨特的優勢。在光電子和功率器件中具有廣闊的應用前景。在液相生長技術中,助溶劑法和氨熱法是生長高質量GaN的有效方法,該論文全面總結了這兩種方法生長GaN的研究進展,詳細分析了這兩種方法在提高晶體質量和尺寸方面的各種策略,并探討了面臨的挑戰和可能的解決方案以及未來的發展趨勢。圖1 系統總結了使用助溶劑和氨熱法生長氮化鎵晶體的最新研究進展圖2 (a) Na助溶劑方法,(b) 堿性氨熱法和 (c) 酸性氨熱法生長GaN晶體的示意圖。在常壓下,不存在的單組分的GaN熔體。從熔體中生長GaN晶體需要6 GPa的高壓和2200 ℃的高溫。助溶劑法具有相對溫和的生長條件。以Na助溶劑為例,添加Na金屬增強氮的溶解度,降低了生長所需的壓力和溫度。Na具有低電子功函數易于釋放電子。在氣液界面的G......閱讀全文
液相法氮化鎵晶體生長研究
GaN是一種寬帶隙半導體材料,具有高擊穿電壓、高的飽和電子漂移速度、優異的結構穩定性和機械性能,在高頻、高功率和高溫等應用領域具有獨特的優勢。在光電子和功率器件中具有廣闊的應用前景。在液相生長技術中,助溶劑法和氨熱法是生長高質量GaN的有效方法,該論文全面總結了這兩種方法生長GaN的研究進展,詳細分
氮化鎵的的化學特性
在室溫下,GaN不溶于水、酸和堿,而在熱的堿溶液中以非常緩慢的速度溶解。NaOH、H2SO4和H3PO4能較快地腐蝕質量差的GaN,可用于這些質量不高的GaN晶體的缺陷檢測。GaN在HCL或H2氣下,在高溫下呈現不穩定特性,而在N2氣下最為穩定。
氮化鎵的的結構特性
結構特性GaN纖鋅礦結構圖GaN的晶體結構主要有兩種,分別是纖鋅礦結構與閃鋅礦結構。
氮化鎵的的電學特性
GaN的電學特性是影響器件的主要因素。未有意摻雜的GaN在各種情況下都呈n型,最好的樣品的電子濃度約為4×1016/cm3。一般情況下所制備的P型樣品,都是高補償的。很多研究小組都從事過這方面的研究工作,其中中村報道了GaN最高遷移率數據在室溫和液氮溫度下分別為μn=600cm2/v·s和μn= 1
氮化鎵的的光學特性
人們關注的GaN的特性,旨在它在藍光和紫光發射器件上的應用。Maruska和Tietjen首先精確地測量了GaN直接隙能量為3.39eV。幾個小組研究了GaN帶隙與溫度的依賴關系,Pankove等人估算了一個帶隙溫度系數的經驗公式:dE/dT=-6.0×10-4eV/k。 Monemar測定了基本的
氮化鎵的的化學特性
在室溫下,GaN不溶于水、酸和堿,而在熱的堿溶液中以非常緩慢的速度溶解。NaOH、H2SO4和H3PO4能較快地腐蝕質量差的GaN,可用于這些質量不高的GaN晶體的缺陷檢測。GaN在HCL或H2氣下,在高溫下呈現不穩定特性,而在N2氣下最為穩定。
氮化鎵襯底晶片實現“中國造”
蘇州納維生產的4 英寸GaN 單晶襯底 一枚看似不起眼、“又輕又薄”的晶片,卻能做出高功率密度、高效率、寬頻譜、長壽命的器件,是理論上電光、光電轉換效率最高的材料體系。這個“小身體大能量”的晶片叫作氮化鎵(GaN)襯底晶片,是蘇州納維科技有限公司(以下簡稱蘇州納維)的主打產品。 “不會游泳的
氮化鎵的的計算化學數據
1、疏水參數計算參考值(XlogP):無2、氫鍵供體數量:03、氫鍵受體數量:14、可旋轉化學鍵數量:05、互變異構體數量:無6、拓撲分子極性表面積:23.87、重原子數量:28、表面電荷:09、復雜度:1010、同位素原子數量:011、確定原子立構中心數量:012、不確定原子立構中心數量:013、
氮化鎵的的合成方法
1、即使在1000℃氮與鎵也不直接反應。在氨氣流中于1050~1100℃下加熱金屬鎵30min可制得疏松的灰色粉末狀氮化鎵GaN。加入碳酸銨可提供氣體以攪動液態金屬,并促使與氮化劑的接觸。2、在干燥的氨氣流中焙燒磨細的GaP或GaAs也可制得GaN。
微電子所在氮化鎵界面態研究方面取得進展
近日,中國科學院微電子研究所高頻高壓中心研究員劉新宇團隊等在GaN界面態研究領域取得進展,在LPCVD-SiNx/GaN界面獲得原子級平整界面和國際先進水平的界面態特性,提出了適用于較寬能量范圍的界面態U型分布函數,實現了離散能級與界面態的分離。 增強型氮化鎵MIS-HEMT是目前尚未成功商用
氮化鎵基無源太赫茲相控陣機制研究獲進展
隨著無線通信技術的發展,太赫茲波因超寬帶、高定向性和高分辨率等優勢,成為6G通信的重要頻譜資源。然而,頻率升高帶來的路徑損耗加劇和信號源輸出功率降低等問題,使系統對高精度、低損耗、大視場的波束控制器件提出嚴苛要求。近日,中國科學院蘇州納米技術與納米仿生研究所秦華團隊提出并研制了基于氮化鎵肖特基二極管
氮化鎵基無源太赫茲相控陣機制研究獲進展
隨著無線通信技術的發展,太赫茲波因超寬帶、高定向性和高分辨率等優勢,成為6G通信的重要頻譜資源。然而,頻率升高帶來的路徑損耗加劇和信號源輸出功率降低等問題,使系統對高精度、低損耗、大視場的波束控制器件提出嚴苛要求。近日,中國科學院蘇州納米技術與納米仿生研究所秦華團隊提出并研制了基于氮化鎵肖特基二極管
氮化鎵功率芯片的應用領域
1)手機充電器。主要有2 個原因,①手機電池容量越來越大,從以前的可能2 000 mA·H 左右,到現在已經到5 000 mA·H。GaN 可以減少充電時間,占位體積變小。②手機及相關電子設備使用越來越多,有USB-A 口、USB-C 口,多頭充電器市場很大,這也是GaN 擅長的領域。2)電源適配器
氮化鎵的的結構和應用特點
氮化鎵是一種無機物,化學式GaN,是氮和鎵的化合物,是一種直接能隙(direct bandgap)的半導體,自1990年起常用在發光二極管中。此化合物結構類似纖鋅礦,硬度很高。氮化鎵的能隙很寬,為3.4電子伏特,可以用在高功率、高速的光電元件中,例如氮化鎵可以用在紫光的激光二極管,可以在不使用非線性
氮化鎵半導體材料的應用前景
對于GaN材料,長期以來由于襯底單晶沒有解決,異質外延缺陷密度相當高,但是器件水平已可實用化。1994年日亞化學所制成1200mcd的 LED,1995年又制成Zcd藍光(450nmLED),綠光12cd(520nmLED);日本1998年制定一個采用寬禁帶氮化物材料開發LED的 7年規劃,其目標是
氮化鎵功率芯片的發展趨勢分析
GaN 功率芯片主要以2 個流派在發展,一個是eMode 常開型,納微代表的是另一個分支——eMode 常關型。相比傳統的常關型的GaN 功率器件,納微又進一步做了集成,包括驅動、保護和控制的集成。GaN 功率芯片集成的優勢如下。1)傳統的Si 器件參數不夠優異,開關速率、開關頻率都受到極大限制,通
氮化鎵半導體材料的優點與缺陷
①禁帶寬度大(3.4eV),熱導率高(1.3W/cm-K),則工作溫度高,擊穿電壓高,抗輻射能力強;②導帶底在Γ點,而且與導帶的其他能谷之間能量差大,則不易產生谷間散射,從而能得到很高的強場漂移速度(電子漂移速度不易飽和);③GaN易與AlN、InN等構成混晶,能制成各種異質結構,已經得到了低溫下遷
氮化鎵的的性質與穩定性
如果遵照規格使用和儲存則不會分解。避免接觸氧化物,熱,水分/潮濕。GaN在1050℃開始分解:2GaN(s)=2Ga(g)+N2(g)。X射線衍射已經指出GaN晶體屬纖維鋅礦晶格類型的六方晶系。在氮氣或氦氣中當溫度為1000℃時GaN會慢慢揮發,證明GaN在較高的溫度下是穩定的,在1130℃時它的蒸
氮化鎵半導體材料新型電子器件應用
GaN材料系列具有低的熱產生率和高的擊穿電場,是研制高溫大功率電子器件和高頻微波器件的重要材料。目前,隨著 MBE技術在GaN材料應用中的進展和關鍵薄膜生長技術的突破,成功地生長出了GaN多種異質結構。用GaN材料制備出了金屬場效應晶體管(MESFET)、異質結場效應晶體管(HFET)、調制摻雜場效
氮化鎵半導體材料光電器件應用介紹
GaN材料系列是一種理想的短波長發光器件材料,GaN及其合金的帶隙覆蓋了從紅色到紫外的光譜范圍。自從1991年日本研制出同質結GaN藍色 LED之后,InGaN/AlGaN雙異質結超亮度藍色LED、InGaN單量子阱GaNLED相繼問世。目前,Zcd和6cd單量子阱GaN藍色和綠色 LED已進入大批
氣相法液相法固相法優缺點
氣相法液相法固相法優點:分離效率高,分析速度快,樣品用量少和檢測靈敏度高。選擇性好,可分離、分析恒沸混合物,沸點相近的物質,某些同位素,順式與反式異構體鄰、間、對位異構體,旋光異構體等。氣相法液相法固相法缺點:分析成本高,液相色譜儀價格及日常維護費用貴,分析時間一般比氣相長。檢測器氣相色譜法中可以使
蘇州納米所利用氮化鎵器件從事核應用研究取得系列成果
氮化鎵(GaN)是一種III / V直接帶隙半導體,作為第三代半導體材料的代表,隨著其生長工藝的不斷發展完善,現已廣泛應用于光電器件領域,如激光器(LD)、發光二極管(LED)、高電子遷移率晶體管(HEMT)等。GaN基材料的良好抗輻射性能和環境穩定性,使得其在核探測領域具有很好的
氮化鎵基LED用藍寶石圖形襯底-關鍵技術研究通過驗收
3月14日,由中國科學院半導體研究所承擔的北京市科委“氮化鎵基LED用藍寶石圖形襯底關鍵技術研究”項目順利通過北京市科委組織專家組驗收。專家們一致認為:項目的實施有利于提高半導體照明行業自主創新能力和產業競爭力,對推動北京市乃至全國半導體照明行業上游關鍵材料的發展具有重要的意義。 在北京市
氮化鎵是實現-5G-的關鍵技術
? 日前,與 SEMICON CHINA 2020 同期的功率及化合物半導體國際論壇 2020 在上海隆重舉行,Qorvo FAE 經理荀穎也在論壇上發表了題為《實現 5G 的關鍵技術—— GaN》的演講。 ?
氮化鎵半導體材料的反應方程式
GaN材料的生長是在高溫下,通過TMGa分解出的Ga與NH3的化學反應實現的,其可逆的反應方程式為:Ga+NH3=GaN+3/2H2生長GaN需要一定的生長溫度,且需要一定的NH3分壓。人們通常采用的方法有常規MOCVD(包括APMOCVD、LPMOCVD)、等離子體增強MOCVD(PE—MOCVD
蘇州納米所攜手上海三鑫開展氮化鎵基藍光激光器研究
簽約儀式 1月15日,在上海市科委的支持和雙方前期深入的溝通下,中科院蘇州納米技術與納米仿生研究所與上海三鑫科技發展有限公司就共同開展“氮化鎵基藍光激光器工程化技術”項目正式簽約。所長楊輝代表蘇州納米所與三鑫公司副總經理戴立勇簽訂了合作協議。 激光顯示被認為是繼黑白、彩色、數字顯
高性能氮化鎵晶體管研制成功
據美國物理學家組織網9月22日(北京時間)報道,法國和瑞士科學家首次使用氮化鎵在(100)-硅(晶體取向為100)基座上,成功制造出了性能優異的高電子遷徙率晶體管(HEMTs)。此前,氮化鎵只能用于(111)-硅上,而目前廣泛使用的由硅制成的互補性金屬氧化半導體(CMOS)芯片一般
備受看好的氧化鎵材料是什么來頭?-(二)
行業的領先廠商 ? 既然這個材料擁有這么領先的性能,自然在全球也有不少的公司投入其中。首先看日本方面,據半導體行業觀察了解,京都大學投資的Flosfia、NICT和田村制作所投資的Novel Crystal是最領先的Ga2O3供應商。 ? 相關資料顯示,Flosfia成立于20
高效液相層析法
高效液相層析法(HPLC)是近二十年來發展起來的一項新穎快速的分離技術。它是在經典液相層析法基礎上,引進了氣相層析的理論具有氣相層析的全部優點。由于HPLC分離能力強、測定靈敏度高,可在室溫下進行,應用范圍極廣,無論是極性還是非極性,小分子還是大分子,熱穩定還是不穩定的化合物均可用此法測定。對蛋白質
工業化砷化鎵的生產工藝介紹
工業化砷化鎵生長工藝包括:直拉法(Cz法)、水平布里其曼法(HB)、垂直布里其曼法(VB法)以及垂直梯度凝固法(VGF法)等。以上方法各有優劣,除了實際工藝制備的方法,另外一種就是通過計算機來實現砷化鎵的晶體生長數值模擬,如利用FEMAG/VB能模擬VB、VGF法生長工藝,利用FEMAG/Cz能模擬