關于核糖體的基本介紹
核糖體是無膜結構,分為附著核糖體和游離核糖體,將氨基酸合成蛋白質是由rRNA和核糖核蛋白構成的微小顆粒,是合成蛋白質的場所,所有細胞都含有核糖體。 核糖體是細胞內一種核糖核蛋白顆粒,主要由RNA(rRNA)和蛋白質構成,其惟一功能是按照mRNA的指令將氨基酸合成蛋白質多肽鏈,所以核糖體是細胞內蛋白質合成的分子機器。 核糖體無膜結構,主要由蛋白質(40%)和RNA(60%)構成。核糖體按沉降系數分為兩類,一類(70S)存在于細菌等原核生物中,另一類(80S)存在于真核細胞的細胞質中。他們有的漂浮在細胞內,有的結集在一起。 核糖體是蛋白質合成的場所,它是由rRNA和蛋白質構成的,蛋白質在表面(稱為大亞基),rRNA在內部(稱為小亞基),并以共價鍵結合。核糖體是多種酶的集合體,有多個活性中心共同承擔蛋白質合成功能。而每個活性中心又都是由一組特殊的蛋白質構成,每種酶或蛋白也只有在整體結構中才具有催化活性。 每一細胞內核糖體的......閱讀全文
關于核糖體的基本介紹
核糖體是無膜結構,分為附著核糖體和游離核糖體,將氨基酸合成蛋白質是由rRNA和核糖核蛋白構成的微小顆粒,是合成蛋白質的場所,所有細胞都含有核糖體。 核糖體是細胞內一種核糖核蛋白顆粒,主要由RNA(rRNA)和蛋白質構成,其惟一功能是按照mRNA的指令將氨基酸合成蛋白質多肽鏈,所以核糖體是細胞內
關于游離核糖體的基本介紹
游離核糖體是在蛋白質合成的全過程中,結合有mRNA的核糖體都是游離存在的(實際上是與細胞骨架結合在一起的),不與內質網結合。這種核糖體之所以不與內質網結合,是因為被合成的蛋白質中沒有特定的信號,與核糖體無關。在蛋白質合成的全過程中, 結合有mRNA的核糖體都是游離存在的(實際上是與細胞骨架結合在
關于核糖體RNA基因的基本介紹
RNA一般與核糖體蛋白質結合在一起,形成核糖體(ribosome),如果把rRNA從核糖體上除掉,核糖體的結構就會發生塌陷。原核生物的核糖體所含的rRNA有5S、16S及23S三種。S為沉降系數(sedimentation coefficient),當用超速離心測定一個粒子的沉淀速度時,此速度與
關于核糖體RNA的基本內容介紹
核糖體RNA,即rRNA,是細胞內含量最多的一類RNA,也是3類RNA(tRNA,mRNA,rRNA)中相對分子質量最大的一類RNA,它與蛋白質結合而形成核糖體,其功能是在mRNA的指導下將氨基酸合成為肽鏈 [1] (肽鏈在內質網、高爾基體作用下盤曲折疊加工修飾成蛋白質,原核生物在細胞質內完成)
關于核糖體DNA的基本信息介紹
核糖體DNA(Ribosomal DNA,rDNA)是一種DNA序列,該序列用于rRNA編碼。核糖體是蛋白質和rRNA分子的組合,翻譯mRNA分子以產生蛋白質的組件。真核生物的rDNA包括一個單元段,一個操縱子,以及由NTS、ETS、18S、ITS1、5.8S、ITS2和28S束組成的串聯重復序
關于多核糖體的基本信息介紹
蛋白質的生物合成是在有兩百多種生物大分子參與下方才把脫氧核糖核酸(DNA)上的遺傳信息密碼“翻譯”成具有各種生物功能的蛋白質,在這一復雜的過程中,不管是原核或真核生物中,凡是蛋白質的合成,證明都在核糖體(ribosome)上完成。而核糖體本身又由多種生物大分子復合而成,但主要由核糖核酸(RNA)
關于細胞器—核糖體的基本信息介紹
核糖體是無膜結構,分為附著核糖體和游離核糖體,將氨基酸合成蛋白質是由rRNA和核糖核蛋白構成的微小顆粒,是合成蛋白質的場所,所有細胞都含有核糖體。 核糖體是細胞內一種核糖核蛋白顆粒,主要由RNA(rRNA)和蛋白質構成,其惟一功能是按照mRNA的指令將氨基酸合成蛋白質多肽鏈,所以核糖體是細胞內
關于最小的細胞器—聚核糖體的基本介紹
聚核糖體是最小的細胞器,光鏡下見不到的結構。在1953年由Ribinson和Broun用電鏡觀察植物細胞時發現胞質中存在一種顆粒物質。 1955年Palade在動物細胞中也看到同樣的顆粒,進一步研究了這些顆粒的化學成份和結構。1958年Roberts根據化學成份命名為核糖核蛋白體,簡稱核糖體R
關于核糖體的分類介紹
細菌核糖體 細菌的核糖體70S核糖體由30S的小亞基和50S的大亞基組成。30S小亞基含有16S RNA(1540個核苷酸)和21種核糖體蛋白質;大亞基由5S RNA(120個核苷酸)、23S RNA(2900個核苷酸)及31個核糖體蛋白組成[5]。 真核生物核糖體 真核生物的核糖體80S
關于核糖體核酶的介紹
核糖體由大小兩個亞基組成,其rRNA占到組分的50%,剩余的50%是一些小型蛋白。蛋白質的主要作用是維持rRNA的正確折疊,但值得注意的是,所有的催化作用都是rRNA介導的。 核糖體有兩個通道:mRNA-tRNA通道(貫穿三個tRNA結合位點:A、P、E)和肽鏈出口通道。大部分新合成的肽鏈都是
關于核糖體蛋白的介紹
一組高度酸性的核糖體蛋白(RP),也稱為P蛋白,在核糖體莖中以多拷貝存在于60S亞基上,P蛋白介導選擇性翻譯[30]。這些P蛋白可以在酵母和哺乳動物細胞中找到。如果酵母中沒有P蛋白,酵母對冷敏感。如果人體細胞缺失P蛋白,誘導細胞自噬。 某些核糖體蛋白是絕對關鍵的,而其它核蛋白則不是。例如,在小
核糖體結合位點的基本介紹
核糖體結合位點(ribosomebinding site,簡稱RBS),是指mRNA的起始AUG上游約8~13核苷酸處,存在一段由4~9個核苷酸組成的共有序列-AGGAGG-,可被16SrRNA通過堿基互補精確識別的序列。 核糖體結合位點是指起始密碼子AUG上游的一段富含嘌呤的非翻譯區。包含S
關于核糖體的生物合成和核糖體的起源介紹
1、生物合成 細菌細胞通過多個核糖體基因操縱子的轉錄在細胞質中合成核糖體。在真核生物中,該合成過程發生在細胞質和核仁中,組裝過程涉及四種rRNA合成、加工和組裝中協調作用的超過200種的蛋白質。 2、核糖體的起源 核糖體可能最初起源于RNA,看起來像一個自我復制的復合體,只是有在氨基酸出現
關于核糖體的組成相關介紹
核糖體是一種高度復雜的細胞機器。它主要由核糖體RNA(rRNA)及數十種不同的核糖體蛋白質(r-protein)組成(物種之間的確切數量略有不同)。核糖體蛋白和rRNA被排列成兩個不同大小的核糖體亞基,通常稱為核糖體的大小亞基。核糖體的大小亞基相互配合共同在蛋白質合成過程中將mRNA轉化為多肽鏈
關于核糖體RNA的結構介紹
測定rRNA的空間排列方式的方法主要有電鏡法和交聯法。其功能部位通過幾種方法確定在70S核糖體圖1中顯示了rRNA分子的結合部位和方向。在電鏡下,16SrRNA的排列呈V型,一個臂比一個臂稍厚和長。23S的大小和形狀可與50S"皇冠"式樣很好匹配。有結論認為,rRNA形成了核糖體亞基的骨架,蛋白
關于多聚核糖體的介紹
多聚核糖體(polyribosome)是指合成蛋白質時,多個甚至幾十個核糖體串聯附著在一條mRNA分子上,形成的似念珠狀結構。在合成多蛋白質時,核糖體并不是單獨工作的,常以多聚核糖體的形式存在。一般來說,mRNA的長度越長,上面可附著的核糖體數量也就越多。 這樣,一條mRNA就可以在幾乎同一時
關于顆粒狀細胞器—核糖體的基本信息介紹
核糖體(Ribosome),舊稱“核糖核蛋白體”或“核蛋白體”,普遍被認為是細胞中的一種細胞器,除哺乳動物成熟的紅細胞,植物篩管細胞外,細胞中都有核糖體存在。一般而言,原核細胞只有一種核糖體,而真核細胞具有兩種核糖體(其中線粒體中的核糖體與細胞質核糖體不相同)。 核糖體的結構和其它細胞器有顯著
關于核糖體RNA的組成的介紹
rRNA一般與核糖體蛋白質結合在一起,形成核糖體(ribosome),如果把rRNA從核糖體上除掉,核糖體的結構就會發生塌陷。原核生物的核糖體所含的rRNA有5S、16S及23S三種。S為沉降系數(sedimentation coefficient),當用超速離心測定一個粒子的沉淀速度時,此速度
關于核糖體的種類劃分的介紹
按核糖體存在的部位可分為三種類型:細胞質核糖體、線粒體核糖體、葉綠體核糖體。 按存在的生物類型 可分為兩種類型:真核生物核糖體和原核生物核糖體。 原核細胞的核糖體較小,沉降系數為70S,相對分子質量為2.5x103 kDa,由50S和30S兩個亞基組成; 而真核細胞的核糖體體積較大,沉降系
關于核糖體RNA基因的功能介紹
就是把DNA上的遺傳信息精確無誤地轉錄下來,然后再由mRNA的堿基順序決定蛋白質的氨基酸順序,完成基因表達過程中的遺傳信息傳遞過程。在真核生物中,轉錄形成的前體RNA中含有大量非編碼序列,大約只有25%序列經加工成為mRNA,最后翻譯為蛋白質。因為這種未經加工的前體mRNA(pre-mRNA)在
核糖體RNA的基本特點
核糖體RNA在各種生物中都有其特性,因此可以從不同生物的rRNA的對比中得出關于生物進化歷程的結論。rRNA為肽酰轉移酶(peptidyl transferase)時,催化使肽鍵形成,不需要額外的能量。過去認為,大亞基的蛋白質具有酶的活性,促使肽鍵形成,故稱為轉肽酶。20世紀90年代初,H.F.No
核糖體的結構和超微結構的基本介紹
結構 各種核糖體盡管大小差異很大,但它們的核心結構非常相似。大部分rRNA高度組織成各種三級結構基序。較大核糖體中額外的RNA都是以幾個長的連續插入形式出現,使得它們在核心結構中形成環而不被破壞或改變[5]。核糖體的所有催化活性均由RNA進行,其表面的蛋白質可以穩定rRNA結構。 超微結構
關于核糖體結合位點的形成介紹
真核細胞的大小亞基是在核中形成的,在核仁部位rDNA轉錄出45SrRNA,是rRNA的前體分子,與胞質運來的蛋白質結合,再進行加工,經酶裂解成28S,18S和5.8S的rRNA,而5SrRNA則在核仁外合成28S,5.8S及5SrRNA與蛋白質結合,形成RNP分子團。為大亞基前體,分散在核仁顆粒
核糖體的介紹
核糖體(Ribosome),舊稱“核糖核蛋白體”或“核蛋白體”[1],普遍被認為是細胞中的一種細胞器。 除哺乳動物成熟的紅細胞,植物篩管細胞外,細胞中都有核糖體存在。一般而言,原核細胞只有一種核糖體,而真核細胞具有兩種核糖體(其中線粒體中的核糖體與細胞質核糖體不相同)。 需要指出的是,因為核
核糖體RNA的基本分類
原核生物的rRNA分三類:5SrRNA、16SrRNA和23SrRNA。真核生物的rRNA分四類:5SrRNA、5.8SrRNA、18SrRNA和28SrRNA。S為大分子物質在超速離心沉降中的一個物理學單位,可間接反映分子量的大小。原核生物和真核生物的核糖體均由大、小兩種亞基組成。在人基因組的四種
核糖體RNA的基本信息
核糖體RNA,即rRNA,是細胞內含量最多的一類RNA,也是3類RNA(tRNA,mRNA,rRNA)中相對分子質量最大的一類RNA,它與蛋白質結合而形成核糖體,其功能是在mRNA的指導下將氨基酸合成為肽鏈 (肽鏈在內質網、高爾基體作用下盤曲折疊加工修飾成蛋白質,原核生物在細胞質內完成)。rRNA占
核糖體DNA的基本信息
核糖體DNA(Ribosomal DNA,rDNA)是一種DNA序列,該序列用于rRNA編碼。核糖體是蛋白質和rRNA分子的組合,翻譯mRNA分子以產生蛋白質的組件。真核生物的rDNA包括一個單元段,一個操縱子,以及由NTS、ETS、18S、ITS1、5.8S、ITS2和28S束組成的串聯重復序列。
核糖體RNA的基本分類
原核生物的rRNA分三類:5SrRNA、16SrRNA和23SrRNA。真核生物的rRNA分四類:5SrRNA、5.8SrRNA、18SrRNA和28SrRNA。S為大分子物質在超速離心沉降中的一個物理學單位,可間接反映分子量的大小。原核生物和真核生物的核糖體均由大、小兩種亞基組成。rRNA結構?核
關于聚核糖體的異常和功能抑制介紹
電鏡下,多聚核糖體的解聚和粗面內質網的脫粒都可看作是蛋白質合成降低或停止的一個形態指標。 多聚核糖體的解聚:是指多聚核糖體分散為單體,失去正常有規律排列,孤立地分散在胞質中或附在粗面內質網膜上。一般認為,游離多聚核糖體的解聚將伴隨著內源性蛋白質生成的減少。脫粒是指粗面內質網上的核糖體脫落下來,
關于細胞器—核糖體的種類劃分介紹
按核糖體存在的部位可分為三種類型:細胞質核糖體、線粒體核糖體、葉綠體核糖體。 按存在的生物類型 可分為兩種類型:真核生物核糖體和原核生物核糖體。 原核細胞的核糖體較小,沉降系數為70S,相對分子質量為2.5x103 kDa,由50S和30S兩個亞基組成; 而真核細胞的核糖體體積較大,沉降系